2. Характеристика этапов по обобщению понятия «степень» и подготовка к изучению показательной функции на множестве действительных чисел
Подготовка к изучению показательной функции содержит достаточно большой материал, который рассматривается с пятого по десятый класс и проходит в несколько этапов. Это объясняется следующими причинами.
1). Школьное обучение в некоторой степени повторяет исторический путь человеческих открытий в целом: в этом и состоит исторический подход к обучению. Закономерности истории развития математического знания включают его возникновение, углубление, расширение, обобщение с течением времени.
2). С психологической точки зрения понимание и усвоение математического материала проходит этапа:
а) фрагментарное понимание и усвоение;
б) логически необобщенное понимание и усвоение;
в) логически обобщенное понимание и усвоение.
Поэтому в программе заложены также три этапа формирования понятия показательной функции:
Пропедевтический курс (5-6 кл.): возведение в степень с натуральным показателем.
Изучение основного содержания: определение степени с натуральным и целым показателем, свойства степеней, действия со степенями (7-9 кл.).
Углубление, обобщение и систематизация знаний о степени; степень с любым действительным показателем; преобразование выражений, содержащих степени; определение показательной функции; решение показательных уравнений и неравенств (10-11 кл.).
Одна из основных целей последнего этапа – привести в систему и обобщить имеющиеся у учащихся сведения о степенях, ввести понятие степени с любым действительным показателем. В зависимости от реальной подготовки класса эти уроки разрабатываются либо как уроки повторения, либо как уроки изучения нового материала. Целесообразно иметь таблицу (рис.2).
Рис. 2
За обозначением для учащихся скрывается пять разных определений (см. рис. 2). Что общего в этих определениях, почему эти разные определения дают единую картину изменения функции?
Имеет место следующий факт:
Разные определения объединяются общим обозначением.
Оказывается, что получившаяся функция описывает самые разные процессы.
Разъяснить эти факты поможет повторное рассмотрение вопроса об определении степени с разным показателями и введение степени с любым действительным показателем. Этот материал изучают в 10-м классе.
Все свойства степеней имеют место при выполнении тех условий (ограничений), при которых действует соответствующее определение степени.
При обобщении понятия степени следует привести в систему знания, накопленные на протяжении нескольких лет (5-9 кл.).
При повторении материала следует привлечь внимание учащихся к тому главному, что имеет значение при обобщении понятия степени.
Восстановить в памяти и полностью довести до понимания, что есть сокращенная запись , и поэтому символ имеет смысл при натуральном . Поэтому правила действий могут применяться лишь тогда, когда не только компоненты, но и результат действия оказывается степенью с натуральным показателем, так как пока не выполнимо по правилу деления степеней.
Следует ограничиться повторением основного свойства степени и следствий, вытекающих из него; обратить внимание, при каких значениях букв правила действий со степенями могут применяться.
Основной вопрос содержания этой темы: какой смысл следует придать (вложить) в новые символы , т.е как определить их, сохранить неизменными старые правила действий, сделав ненужными ограничения, которые вытекали из первоначального определения степени с натуральным показателем и обратить внимание на новые ограничения.
Нужно, чтобы определения понятий были даны не формально, не в виде немотивированных формулировок, а был бы вскрыт ход мысли, который побудил принять именно такие определения (новое определение). Все определения степени (1), (2), (3) (рис. 1) являются определениями – условными соглашениями. Задача учителя состоит в том, чтобы показать целесообразность соответствующего соглашения.
- Методика изучения математики в основной школе
- Цай и.С., Ярославцева л.Г., составление, 2011
- Педагогический университет», 2011 Оглавление
- Лекция 1. Тождественные преобразования выражений
- Введение
- Основной понятийный материал
- Теоретические основы тождественных преобразований выражений
- 3. Место, содержание и значение темы в школьном курсе математики
- 3.2.1. Общеобразовательное и развивающее
- 3.2.2. Воспитательное значение
- 3.2.3. Практическое значение
- 4. Изучение тождественных преобразований выражений в пропедевтическом курсе математики
- 5. Некоторые методические особенности изучения тождественных преобразований в систематическом курсе алгебры
- Задания для самостоятельной работы
- Список литературы
- Методические рекомендации для организации самостоятельной работы студентов по теме «Тождественные преобразования выражений»
- Алгоритмы
- 1. Вынесение множителя из-под знака квадратного корня
- Внесение множителя под знак квадратного корня
- Индивидуальные задания
- Список литературы для выполнения индивидуальных заданий
- Лекция 2. Содержательная линия «уравнения и неравенства» в школьном курсе математики
- Введение
- 1. Место и значение уравнений и неравенств в шкм
- 2. Теоретические основы линии уравнений и неравенств
- 3. Основные этапы изучения уравнений и неравенств4
- 4. Введение понятия уравнения (неравенства с переменной)
- 5. Методика обучения решению уравнений и неравенств
- Решение уравнений первой степени с одной переменной
- Решение уравнений с одной переменной степени выше первой
- Введение новой переменной как прием равносильных преобразований уравнений
- Список литературы
- Методические рекомендации к изучению темы «Неравенства» в школьном курсе математики
- Общее задание:
- Темы индивидуальных заданий
- Темы рефератов
- Список дополнительной литературы
- Лекция 3. Обобщение понятия степени
- Введение
- Основная цель и значение изучения данной темы
- 2. Характеристика этапов по обобщению понятия «степень» и подготовка к изучению показательной функции на множестве действительных чисел
- 3. Примерная схема рассуждений, относящихся к методике уроков систематизации и обобщения сведений о степенях
- Список литературы
- Задания для самостоятельной работы
- Лекция 4. Изучение геометрии в основной школе
- Логическое строение геометрии
- Возможные методические подходы к построению школьного курса геометрии
- 3. Основные этапы изучения геометрии в школе
- 4. Первые уроки систематического курса геометрии
- Некоторые методические рекомендации к первым урокам геометрии
- Список литературы
- 1. Нормативные документы:
- 2. Методики:
- 3. Учебники и учебные пособия для учащихся:
- 4. Пособия для учителя:
- Методические рекомендации для организации самостоятельной работы студентов по теме «Изучение геометрии в основной школе»
- Индивидуальные задания:
- Приложение а.Д Александров о геометрии
- И.Я. Виленкин, с.И Шварцбурд Равенства, тождества, уравнения, неравенства
- Учебное издание методика изучения математики в основной школе
- Авторы-составители :
- 614990, Г. Пермь, ул. Сибирская, 24, корп. 2, оф. 71,
- 614990, Г. Пермь, ул. Сибирская, 24, корп. 1, оф. 11