logo
3

Методика знакомства со свойствами геометрических фигур

- Как называется?

- Провокационный (показываем новую фигуру (овал) и спрашиваем: «Это круг?»)

- Чем похожи?

- Чем отличаются?

- фигуры отличаются только по форме,

- фигуры разного цвета, размеров, пропорций.

- Нахождение фигуры по образцу («Найди свой домик», «Чей домик быстрее соберется», «Автомобили и гаражи»).

- Нахождение фигуры по названию («Чудесный мешочек», «Дай мне названную фигуру»).

- Нахождение фигуры по описанию (перечисление характерных свойств), «Отгадай».

- Составление фигур из частей (игры-головоломки: «Пифагор», «Танграмм», «Калумбово яйцо», активно используются в программе «Детство»).

Виды заданий

1. Построить треугольник, квадрат, прямоугольник. После формулировки задания анализируем фигуры и выясняем, сколько сторон, углов, равны ли стороны, сколько надо взять палочек.

Если у детей возникают сложности, то дается индивидуальный образец.

2. Провокационное задание: выложить круг из палочек (нельзя - у круга нет сторон).

3. Задание занимательного характера на смекалку: выложить два треугольника из 5-ти палочек.

На 2-ом этапе (старшая группа). Кроме палочек одинаковой длины предлагаем палочки разной длины:

- построй фигуры разные по величине;

- построй треугольники с разными по длине сторонами;

- построй трапецию, ромб.

Предварительно детям задаются вопросы (как на первом этапе).

Задания на смекалку.

- как получить из прямоугольника трапецию. Предложить одну палочку, чтобы получилась другая фигура.

- можно предложить выложить домик, кораблик и т.д.

- Накрываем прямой ладошкой фигуру на столе. Если ладошка касается стола – фигура плоская, если нет - объемная. Или: если фигура прячется в ладошках, то она плоская, если нет - объемная. Плоские фигуры – это «письма», а объемные «посылки», не помещающиеся в почтовую прорезь.

- Применяется подсчет углов (например, у квадрата – 4, а у куба – 8).

- Плоские фигуры можно изобразить на листе бумаги в процессе рисования или аппликации, а объемные – в процессе лепки или конструирования из бумаги или строительных деталей. Если надо нарисовать объемный предмет, то его изображаем в виде соответствующей плоской фигуры.

Замечания о прямоугольнике.

1. Вначале отличие прямоугольника и квадрата показывается путем наложения. У квадрата выступают кусочки, значит фигуры разные.

2. У квадрата все стороны равны, а у простого прямоугольника соседние стороны не равны. Проверяем это одним из следующих приёмов:

- сгибание листа до совмещения соседних сторон;

- использование условной мерки.

Важно, чтобы дети понимали, что квадрат является прямоугольником. Можно сказать, что квадрат - волшебный прямоугольник (все стороны равны). В старшей группе проводится обобщение понятия «прямоугольник», предварительно поясняется понятие «прямой угол». Сначала уточнятся, что такое угол.

Показываем и называем, что этот кусочек плоскости – угол (часть плоскости между сторонами, имеющими общую точу).

Для того чтобы дать представление о прямом угле, рассматривается 2 картинки:

1. Дерево растет ровно, прямо, значит между деревом и землей прямой угол.

2. Подул ветер, и дерево наклонилось. Дерево стоит не прямо, значит угол не прямой.

Далее рассматриваются различные фигуры, сравниваются и измеряются у них углы с помощью условной мерки. равной по величине прямому углу. Чтобы дети не путали угол с треугольником, край условной мерки должен быть не прямой линией.

Проводятся упражнения по прикладыванию мерки к углам разных фигур. Поясняется происхождение слова «прямоугольник»: «прямой» + «угол».

Упражнение: измерить углы у предметов в групповой комнате с помощью условной мерки.

Замечания об овале. Более точный способ показа отличия овала от круга - это измерение осей.

Пояснение понятия «ось»: «У круга и овала сторон нет, мы нарисуем линию внутри фигур через середину фигуры от одного края к другому. Эти линии называются «оси». Приводятся примеры округлых предметов, в которых имеется ось, подводя к выводу: у круга – все оси равны между собой, а у овала – нет.

Два способа измерение осей:

- с помощью условной мерки.

- сгибание по оси.

Замечания о ромбе. В старш.возр. показывается сначала сходство между ромбом и квадратом (4 угла; 4 стороны, все стороны равны).

Отличие заключается в том, что у ромба не все углы равны. Это показывается при помощи условной мерки, равной прямому углу.

Знакомство с ромбом происходит в процессе аппликации и рисования.

Замечания о трапеции. В старш.возр. при сравнении трапеции с прямоугольником выделяются следующие отличия:

1) у трапеции не все углы прямые.

2) параллельные противоположные стороны у трапеции не равны (проверяется путем сгибания до совмещения противоположных сторон, либо путем измерения условной меркой).

3) У трапеции 2 стороны наклонные (не параллельные).

Детям поясняется параллельность через показ того, что расстояние между сторонами прямоугольника одинаково, а между сторонами трапеции нет. Приводим примеры параллельности: электропровода, рельсы, предметы мебели.

Затем трапеция сравнивается с треугольником (крыша бывает разной формы). Отличия: у треугольника 3 угла и 3 стороны, а у трапеции 4 угла и 4 стороны.

На занятиях по аппликации показываются способы получения трапеции сначала из прямоугольника, а затем из треугольника.

Замечания о цилиндре. В среднем возр. цилиндр сравнивается с шаром и кубом.

Сначала показывается, чем похож и чем отличается цилиндр от шара, а затем - от куба.

Цилиндр для сравнения с шаром кладется на бок и выделяются сходства фигур:

1) боковая поверхность обеих фигур не имеет препятствий.

2) шар и цилиндр катятся.

3) если положить шар на шар и цилиндр на цилиндр, то башенка не получается.

Затем цилиндр переворачивается на основание, так он на шар не похож (есть препятствие, не катится, башенку из цилиндров можно построить). Обращается внимание, что в таком положении он похож на куб. Делается вывод: цилиндр – хитрая фигура, если лежит на боку - похожа на шар, если стоит на основании, то - на куб.

В старшем возрасте цилиндр сравнивается с овалоидом в процессе лепки. Сначала выясняется, чем похожи эти фигуры. Затем показывается единственное отличие: если цилиндр стоит на основании, то он устойчив, а овалоид неустойчив в любом положении. Существуют также отличия в приемах лепки.

Замечания о конусе. Отличия конуса от цилиндра:

1) из цилиндров можно построить башенку; а из конусов – нельзя;

2) цилиндр катится вперед – назад, конус – по кругу;

3) у цилиндра и пол, и потолок имеют форму круга;

4) толщина цилиндра внизу и вверху одинаковая, конус внизу толстый, а вверху тоненький.

В старш. возр. с конусом сравниваем пирамиду и треугольную призму.

Отличие пирамиды от конуса:

1) у пирамиды ребристая боковая поверхность.

2) основание у конуса – круг, у пирамиды – многоугольник.

Отличие конуса и треугольной призмы:

1) поверхность у призмы негладкая, ребристая,

2) призма не катится,

3) у треугольной призмы 2 острые вершины, когда лежит на боку.

4) у треугольной призмы основание другой формы,

5) разное количество вершин.

Схожесть: обе фигуры используются как крыша.

Замечания о призме. Знакомство с призмой происходит в старшем возрасте на основе сравнения с кубом (аналогично как сравнивались прямоугольник с квадратом).

Отличия: все стороны куба (ребра) равны, а у призмы общего вида соседние стороны не равны (измеряются условной меркой).

К концу ст. возраста показываются отличия 4-угольной и 3-угольной призм.

1) основания у 4-угольной призмы имеет форму четырехугольника, а у треугольной призмы – треугольника. Поэтому они по-разному называются.

2) 4-угольная призма устойчива (можно построить башенку), если лежит на боковой грани, а 3-угольная – нет. Эта фигура используется как крыша в конструировании.

Замечания об овалоиде. Отличия овалоида и шараотличительные приемы в лепке фигур: шар – раскатывание круговыми движениями, овалоид только вперед - назад.

Показывается, что у них разная толщина (обычно на лепке).

2 способа:

1. Условная мерка – палочка. Если проткнуть шар по вертикали и горизонтали, то толщина – одинаковая. Если проткнуть овалоид, толщина – разная.

2. С помощью ниточки – условной мерки можно обмотать шар сначала по вертикали, а затем по горизонтали, длина ниточки – одинаковая. Для овалоида понадобиться ниточка разной длины.

Пример ознакомления с кругом.