Вопросы для самопроверки.
Каковы основные задачи изучения курса стереометрии?
Что составляет содержание школьного курса стереометрии?
Перечислить основные методические особенности изучения курса стереометрии.
Что означает выражение «формирование пространственных представлений школьников»?
Какова схема формирования пространственных представлений на каждом из четырех этапов?
Какие требования обычно предъявляются и геометрическим чертежам?
Литература: 4, 6, 7, 10, 14, 16, 17.
Лекция 10. Задачи на построение в курсе стереометрии.
План.
I. Методика решения задач на воображаемые построения.
II.Построения на проекционном чертеже.
Содержание лекции:
I. Воображаемые построения (В.п.) – формально-логический метод построения в пространстве с отказом от реальных построений с помощью чертежных инструментов, осуществляются как бы мысленно; рисунок, их сопровождающий, носит чисто иллюстративный характер.
С математической точки зрения В.п. рассматриваются как задачи на доказательство существования фигур, определенных некоторым известными условиями. Само доказательство заключается в сведении процесса построения фигур (или их комбинаций) к конечному числу основных построений, которые определяются аксиоматически. При этом решение (доказательство) может сопровождаться, а может не сопровождаться рисунком.
Учитель обращает внимание учащихся на ряд сложностей, возникающих при осуществлении построений в пространстве (нельзя построить плоскость, многогранник и т.д.). Поэтому необходимо точно условиться: что значит выполнить то или иное построение.
Исходя из аксиом стереометрии, можно предположить возможность следующих основных построений в пространстве:
1) Плоскость может быть построена, если заданы следующие элементы, определяющие ее положение в пространстве:
а) прямая и не лежащая на ней точка,
б) две пересекающиеся прямые,
в) две параллельные прямые,
г) три точки, не лежащие на одной прямой.
2) Прямая в пространстве может быть построена как линия пересечения двух плоскостей.
3) Все планиметрические построения выполнимы в пространстве только на некоторой заданной плоскости.
4) Сфера может быть построена, если задано положение ее центра и радиуса R.
Выполнение всех остальных построений сводится к конечному числу основных.
II. На проекционном чертеже точки и прямые задаются вместе со своими проекциями на некоторую плоскость, которую называют основной.
Проекционные чертежи позволяют конструктивным средствами строить точки и линии пересечения изображаемых на нем фигур. Они имеют очень важное значение для развития пространственного воображения школьников.
С проекционными чертежами рекомендуется ознакомить школьников в 10 классе при изучении параллельной проекции ее свойств. Здесь учитель подводит школьников к выводу о том, что фигуры на чертеже могут задаваться ее проекцией на проекционной плоскости.
При чем, если точка или фигура совпадает со своей проекцией, то данная точка или фигура лежит на проекционной плоскости.
Проекционный чертеж может быть иллюстрирован моделью параллелепипеда, где проекционная плоскость – это плоскость нижнего основания, направление проектирования определяется боковыми ребрами, а проекция верхнего основания – нижнее основание (см. рис.)
Основным видом стереометрических задач на построение на проекционном чертеже являются задачи на построение сечений многогранников. В школе рассматриваются два метода построения сечений:
метод следов; 2) метод внутреннего проектирования
(Иногда используют их комбинацию).
В соответствии с методом следов вначале строится след секущей плоскости на проекционной, а затем последовательно находятся линии пересечения секущей плоскости с гранями многогранника.
Основным минусом этого метода является то, что след секущей плоскости может оказаться удаленным от основной части чертеже, следовательно, приходится уменьшать чертеж, что нежелательно.
Метод внутреннего проектирования основывается на соответствии между точками сечения и точками основания многогранника. Все построения – внутри него, но сложнее объяснить логику построения, да и чертеж загроможден.
- Раздел. Специальная (частная) методика геометрии: планиметрии и стереометрии.
- Тема 1. Логическое строение школьного курса геометрии.
- Структура школьного курса геометрии.
- Задания для самостоятельной работы.
- Вопросы для самопроверки:
- Тема 2. Методика изучения первых разделов (тем) систематического курса геометрии.
- Начиная изучать курс планиметрии в 7 классе, учитель сталкивается с определенными трудностями.
- Задание для самостоятельной работы.
- Вопросы для самопроверки:
- Тема 3. Изучение взаимного расположения прямых на плоскости. Параллельность и перпендикулярность прямых.
- Вопросы для самопроверки:
- Тема 4. Геометрические построения в курсе планиметрии. Методика обучения решению задач на построение.
- Вопросы для самопроверки:
- Тема 1. Методика изучения многоугольников в школьном курсе планиметрии.
- Вопросы для самопроверки:
- Тема 6. Геометрические преобразования в школьном курсе геометрии.
- Вопросы для самопроверки:
- Тема 7. Векторы в школьном курсе математики.
- Вопросы для самопроверки:
- Лекция 8. Методика изучения геометрических величин в школьном курсе математики.
- Vвпис. Ш. Vмногогр. Vопис. Ш.
- Вопросы для самопроверки:
- Лекция 9. Особенности изучения стереометрии в средней школе. Методика первых уроков стереометрии.
- § 15. Аксиомы стереометрии и их Введение. Предмет стереометрии
- § 16. Параллельность прямых и гл. I. .…………………………….
- Вопросы для самопроверки.
- Вопросы для самопроверки:
- Лекция 11. Методика изучения координат, векторов и геометрических преобразований в пространстве в школьном курсе стереометрии.
- Вопросы для самопроверки:
- Лекция 12. Изучение параллельности и перпендикулярности прямых и плоскостей в курсе стереометрии.
- Вопросы для самопроверки.
- Лекция 13. Методика изучения многогранников, фигур вращения в школьном курсе стереометрии.
- Вопросы для самопроверки.