Лекция 11. Методика изучения координат, векторов и геометрических преобразований в пространстве в школьном курсе стереометрии.
План.
I. Роль и место материала в курсе стереометрии.
II. Методические особенности его изучения.
Содержание лекции:
Попытки введения более современных, чем традиционный синтетический, методов в курс стереометрии неоднократно предпринимались с конца 19 века в силу следующих соображений:
применение более современных методов позволяет существенно упростить и алгоритмизировать решение стереометрических задач и доказательство теорем.
необходимо было осовременить школьный курс стереометрии, приблизить его к насущным проблемам действительности.
большая прикладная значимость и многообразие межпредметных связей соответствующих разделов: векторы – в физике, координаты – в алгебре, геометрические преобразования – в картографии.
В XX веке были созданы новые курсы геометрии, сориентированные на преимущественное использование алгебраического метода (геометрия Шоке), метода геометрических преобразований – учебное пособие Колмогорова, векторный метод – пособие под ред. Скопеца и др.
Но введение в школу этих учебников не увенчались успехом из-за:
отрицательного влияния на развитие пространственных представлений школьников, их геометрической интуиции;
сложности перехода к новой аксиоматике (векторной или метрической);
не совсем достаточно удачного методического решения проблемы создания новых учебников, а также неподготовленности учителей к этому переходу.
В силу указанных причин авторы действующих в настоящее время учебников попытались найти оптимальное сочетание традиционно-синтетических и более современных подходов. При этом координаты, векторы и преобразования стали рассматриваться скорее как объекты изучения, чем как мощные методы решения задач и доказательства теорем.
Место данной темы в курсе стереометрии может быть различным:
а) В начале курса. При этом существенно облегчаются доказательства многих теорем традиционных разделов.
б) После рассмотрения параллельности и перпендикулярности прямых и плоскостей в пространстве. Основное применение в темах многогранниках и телах вращения. (Как в учебнике Погорелова и частично в учебнике Атанасяна).
в) В конце курса стереометрии. При этом появляется возможность показа преимущества рассматриваемых методов перед традиционным при решении задач.
Однако, как правило, здесь не хватает времени на вторичное прохождение материала и возникает опасность путаницы в понятиях.
В учебнике А.В.Погорелова реализована следующая схема:
В учебнике Л.С. Атанасяна:
полигон аппарат
векторы координаты преобразования
(движения)
В учебнике Л.С. Атанасяна наименьшее внимание уделено геометрическим преобразованиям, в учебнике А.В. Погорелова – векторам.
II. Материал о координатах, векторах и преобразованиях в стереометрии подчеркнуть повторяет соответствующий планиметрический материал в действующих учебниках. При этом повторение планиметрии затруднено из-за недостатка времени. Следовательно, такое повторение целесообразно осуществлять в процессе ознакомления с соответствующими стереометрическими фактами и их доказательстве.
Например, при выводе формулы расстояния между точками, как в планиметрии, так и в стереометрии строится прямоугольный треугольник и применяется теорема Пифагора.
Таким образом, в стереометрии эти вопросы изучаются аналогично + этап сведения к планиметрическому аналогу. Поэтому можно использовать следующую методическую схему ее вида этой формулы:
Актуализация планиметрической формулы и идеи ее вывода.
При решении стереометрической задачи на интуитивном уровне записывается пространственный аналог.
Обсуждается возможность переноса идеи вывода планиметрической формулы на стереометрический факт.
Сведения пространственной конфигурации к плоскостной.
Осуществление доказательства по составленному плану:
а) сведения к планиметрическому анализу;
б) применение планиметрической идеи;
6)Закрепление доказательства в соответствии с известными этапами.
В действующих учебниках рассматриваются по существу только основной аппарат метода координат и векторной алгебры. При этом возможности применения этих методов при решении содержательных стереометрических задач и задач из других разделов весьма незначительны, и это оказывает отрицательное воздействие на осознание сущности данных методов в целом.
Учителю необходимо на материале стереометрии закрепить приобретенные ранее представления о существующих методах и их компонентах на основе использования системы специальных упражнений.
В конце изучения данной темы «Координаты, векторы, преобразования» целесообразно провести спаренный урок-семинар (лучше урок-практикум) по одновременному решению задач всеми методами и их сопоставительному анализу.
При этом отдельным группам учеников может быть предложена задача, которую необходимо решить одним из методов (либо на уроке, либо как домашнее задание). В процессе обсуждения решения со всем классом выделяются критерии применимости того или иного метода в данной ситуации, а также его плюсы и минусы.
На практике при решении содержательных стереометрических задач чаще приходится пользоваться более универсальным координатно-векторным методом.
Его использование наглядно можно увидеть при решении следующей задачи:
В треугольной пирамиде ДАВС плоские углы при вершине Д равны по 90 0. Боковые ребра ДА = 6, ДВ = 8, ДС = 24. точка М равноудалена от всех вершин пирамиды. Найти расстояние ДМ. (Решать самостоятельно).
Задания для самостоятельной работы:
Провести сравнительный анализ содержания данного материала по учебникам: а) А.В. Погорелова; б) Л.С. Атанасяна и др.; в) И.М. Смирновой и В.А. Смирнова.
Составить конспект статьи А.Д. Александрова «Так что же такое вектор?» «Математика в школе», № 5 – 1984г., с.39-46.
Показать суть координатно-векторного метода при решении задачи:
В треугольной пирамиде ДАВС плоские углы при вершине Д равны по 90 0. Боковые ребра ДА = 6, ДВ = 8, ДС = 24. точка М равноудалена от всех вершин пирамиды. Найти расстояние ДМ.
- Раздел. Специальная (частная) методика геометрии: планиметрии и стереометрии.
- Тема 1. Логическое строение школьного курса геометрии.
- Структура школьного курса геометрии.
- Задания для самостоятельной работы.
- Вопросы для самопроверки:
- Тема 2. Методика изучения первых разделов (тем) систематического курса геометрии.
- Начиная изучать курс планиметрии в 7 классе, учитель сталкивается с определенными трудностями.
- Задание для самостоятельной работы.
- Вопросы для самопроверки:
- Тема 3. Изучение взаимного расположения прямых на плоскости. Параллельность и перпендикулярность прямых.
- Вопросы для самопроверки:
- Тема 4. Геометрические построения в курсе планиметрии. Методика обучения решению задач на построение.
- Вопросы для самопроверки:
- Тема 1. Методика изучения многоугольников в школьном курсе планиметрии.
- Вопросы для самопроверки:
- Тема 6. Геометрические преобразования в школьном курсе геометрии.
- Вопросы для самопроверки:
- Тема 7. Векторы в школьном курсе математики.
- Вопросы для самопроверки:
- Лекция 8. Методика изучения геометрических величин в школьном курсе математики.
- Vвпис. Ш. Vмногогр. Vопис. Ш.
- Вопросы для самопроверки:
- Лекция 9. Особенности изучения стереометрии в средней школе. Методика первых уроков стереометрии.
- § 15. Аксиомы стереометрии и их Введение. Предмет стереометрии
- § 16. Параллельность прямых и гл. I. .…………………………….
- Вопросы для самопроверки.
- Вопросы для самопроверки:
- Лекция 11. Методика изучения координат, векторов и геометрических преобразований в пространстве в школьном курсе стереометрии.
- Вопросы для самопроверки:
- Лекция 12. Изучение параллельности и перпендикулярности прямых и плоскостей в курсе стереометрии.
- Вопросы для самопроверки.
- Лекция 13. Методика изучения многогранников, фигур вращения в школьном курсе стереометрии.
- Вопросы для самопроверки.