Методика изучения числовых последовательностей и прогрессий.
Определение: числовой последовательностью наз. числовая функция натурального аргумента xn=f(n)
Задать числовую последовательность значит задать правило, по которому каждому натуральному числу n соответствует одно и только одно число.
Способы задания последовательности:
1)аналитический- с помощью формулы n-го члена последовательности, по которой могут быть вычислены все остальные
2)табличный
3)рекуррентный
4)словесный
Виды:
1)последовательность наз.убывающей(строго) если каждый её следующий член меньше предыдущего
2) последовательность наз. возрастающей(строго) если каждый её следующий член больше предыдущего
3) последовательность наз. неубывающей если каждый её следующий член не меньше предыдущего
4) последовательность наз.не возрастающей если каждый её следующий член не больше предыдущего
Прогрессии
1)Арифметической прогрессией наз. числовую последовательность, каждый член которой, начинается со второго, равен предыдущему члену, сложенному с одним и тем же числом, это число наз. разностью арифметической прогрессии и обозначают буквой d.
an=a1+d(n-1)
2) Геометрической прогрессией наз. числовую последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему члену, умноженному на одно и то же число, не равное нулю.
bn+1=bnq
Арифметическая и геометрическая прогрессии являются примерами последовательностей, изучаемых в школьном курсе,которые в свою очередь являются примерами ф-й с натуральным аргументом. Тем самым устанавливается связь этих прогрессий с ф-ми. Однако функциональный подход к прогрессиям сам по себе большого интереса не представляет, в школьном курсе дело сводиться к вычислительным задачам, решаемым на основе ф-л общего члена и суммы n членов этих прогрессий. Отдельный интерес представляет вопрос о сумме членов бесконечно убывающей геомет. прогрессии. хотя вопрос о прогрессиях дошкольного курса является традиционным тем не менее, большого применения он в нем не находит. Одно из типичных применений- вывод правил перевода бесконечной десятичной периодич.дроби в обыкновенную, которая для теперешнего базового уровня обучения, не является доступной.
-
Содержание
- Методика изучения начал систематического школьного курса планиметрии.
- Методика изучения подобных треугольников.
- Методика изучения основных соотношений между элементами треугольника.
- Методика изучения понятия равенства фигур. Доказательство первых теорем планиметрии. Признаки равенства треугольников.
- 2.6 Методика изучения величин в школьном курсе планиметрии.
- 2.7Обобщение понятия степени в школьном курсе математики.
- 2.8 Исторические и логические последовательности изучения числовых множеств. Общий принцип расширения числовых множеств. Общая схема изучения новых чисел.
- 2.9Методика повторения и дальнейшего изучения натуральных чисел. Изучение обыкновенных и десятичных дробей.
- 2.10 Методика изучения тригонометрических функций в курсе планиметрии.
- Методика изучения показательной и логарифмической функций в средней школе.
- Методика введения и изучения рациональных чисел.
- Методика введения и изучения иррациональных чисел.
- 2.14Методика изучения процентов. Основные задачи на проценты в школьном курсе математики.
- 2.15Методика изучения тождественных преобразований.
- Методика изучения тригонометрических уравнений и неравенств в средней школе.
- 2.17Методика изучения показательных и логарифмических уравнений и неравенств в средней школе.
- 2.18Методика изучения уравнений и их систем в средней школе. Равносильность уравнений. Алгебраические уравнения и их системы.
- Методика изучения неравенств и их систем в средней школе. Метод интервалов при решении неравенств.
- Методика изучения функций. Понятие функций. Возможная методическая схема изучения функций в базовой школе. Методика изучения алгебраических функций.
- Методика изучения числовых последовательностей и прогрессий.
- Методика введения и изучения понятия производной в средней школе.
- 2.24Методика обучения школьников решению текстовых задач арифметическим методом и методом составления уравнений и неравенств.
- 2.25 Методические особенности изучения тригонометрических функций в средней школе. Построение графиков тригонометрических функций.
- 2.26 Использование понятия производной в курсе алгебры средней школы.