Методика введения и изучения иррациональных чисел.
1. Введение начинается с целесообразно подобранной задачи. Например: извлечение квадратного корня из положительного числа, не являющегося полным квадратом; каким числом выражается длина диагонали квадрата со стороной 1; чему равна сторона квадрата, если известно, что его площадь равна 3.
Практические задачи: задачи измерения; каждой ли точке координатной прямой соответствует рац число?
Изображение чисел на координатной прямой
П окажем, что т. В’ соответствует числу, не явл рацион, т. к. диагональ квадрата ОВ несоизмерима с его стороной ОА
Д-во, что т. В не соотв. никакому рац числу
Т. к. т. В’ находится на ОХ,
От противного: пусть – несократимая дробь. Обе части – неотрицательны, возведем в квадрат, получим: , , => – четное, => – четное. Значит можно представить в виде . Подставим в :
=> , => – четное, – четное. Тогда имеем – четные. Это противоречит тому, что – несократимая дробь. => => не является рациональным числом.Таким образом, число можно изобразить на координатной прямой некоторым числом, которое не является рациональным. Такие числа называются иррациональными.
2 подход
С другой стороны .
Если натуральное число не есть квадрат некоторого натурального числа, то оно есть квадрат иррационального числа. Таким образом, – иррациональное число.
3 подход
Иррациональные числа – есть бесконечные десятичные непериодические дроби. Так как нельзя извлечь нацело есть бесконечная десятичная непериодическая дробь есть число иррациональное.
4 подход
Рассмотрим приближенное значение с недостатком и с избытком:
С недостатком: 1,4; 1,41; 1,414; 1,4142
С избытком: 1,5; 1,42; 1,415; 1,4143
Объединим эти последовательности: 1,4< 1,41< 1,414 <1,4142 < < 1,4143 < 1,415 < 1,42 < 1,5
Докажем, что границей или пределом последовательностей является некоторое иррациональное число. Пусть границей явл , с другой стороны границей явл несократимая дробь .
Таким образом, на границе последовательности, представляющей квадраты членов, последовательности приближений с недостатком и с избытком находится с одной стороны число 2, а с другой - , причем => данную последовательность определяют два числа, не равные между собой, а это невозможно => последовательности определяют единственное число . Действия над иррациональными числами:1) сравнение (можно как десятичные дроби, сравнивая кол-во единиц в соответствующих разрядах, можно как квадраты корней);2) сложение, вычитание, умножение, деление (нельзя выполнять как с десятичными дробями).
- Методика изучения начал систематического школьного курса планиметрии.
- Методика изучения подобных треугольников.
- Методика изучения основных соотношений между элементами треугольника.
- Методика изучения понятия равенства фигур. Доказательство первых теорем планиметрии. Признаки равенства треугольников.
- 2.6 Методика изучения величин в школьном курсе планиметрии.
- 2.7Обобщение понятия степени в школьном курсе математики.
- 2.8 Исторические и логические последовательности изучения числовых множеств. Общий принцип расширения числовых множеств. Общая схема изучения новых чисел.
- 2.9Методика повторения и дальнейшего изучения натуральных чисел. Изучение обыкновенных и десятичных дробей.
- 2.10 Методика изучения тригонометрических функций в курсе планиметрии.
- Методика изучения показательной и логарифмической функций в средней школе.
- Методика введения и изучения рациональных чисел.
- Методика введения и изучения иррациональных чисел.
- 2.14Методика изучения процентов. Основные задачи на проценты в школьном курсе математики.
- 2.15Методика изучения тождественных преобразований.
- Методика изучения тригонометрических уравнений и неравенств в средней школе.
- 2.17Методика изучения показательных и логарифмических уравнений и неравенств в средней школе.
- 2.18Методика изучения уравнений и их систем в средней школе. Равносильность уравнений. Алгебраические уравнения и их системы.
- Методика изучения неравенств и их систем в средней школе. Метод интервалов при решении неравенств.
- Методика изучения функций. Понятие функций. Возможная методическая схема изучения функций в базовой школе. Методика изучения алгебраических функций.
- Методика изучения числовых последовательностей и прогрессий.
- Методика введения и изучения понятия производной в средней школе.
- 2.24Методика обучения школьников решению текстовых задач арифметическим методом и методом составления уравнений и неравенств.
- 2.25 Методические особенности изучения тригонометрических функций в средней школе. Построение графиков тригонометрических функций.
- 2.26 Использование понятия производной в курсе алгебры средней школы.