logo search
кулакова 1

III. Аксиомы конгруэнтности

III, 1. Если А и В – две точки на прямой а, А’ – точка на той же прямой или на другой прямой а’, то по данную от точки А’ сторону прямой а’ найдется, и притом только одна, точка В’ такая, что отрезок А’B’ конгруэнтен отрезку АВ. Каждый отрезок АВ конгруэнтен отрезку ВА.1

III, 2. Если отрезки А’B’ и А”B” конгруэнтны одному и тому же отрезку АВ, то они конгруэнтны и между собой.

III, 3. Пусть АВ и ВС – два отрезка прямой а, не имеющие общих внутренних точек, А’B’ и B’C’ – два отрезка той же прямой, или другой прямой а’, также не имеющие общих внутренних точек. Тогда если отрезок АВ конгруэнтен отрезку А’B’, а отрезок ВС конгруэнтен отрезку B’C’, то отрезок АС конгруэнтен отрезку А’C’.

Сформулированные три аксиомы относятся к конгруэнтности отрезков. Для формулировки следующих аксиом нам понадобятся понятие угла и его внутренних точек.

Пара полупрямых h и k, выходящих из одной и той же точки О и не лежащих на одной прямой, называется углом и обозначается символом или.

Если полупрямые задаются двумя своими точками ОА и ОВ, то мы будем обозначать угол символом или. В силу теоремы 4 любые два луча h и k, составляющие угол, определяют, и притом единственную, плоскость α.

Внутренними точками будем называть те точки плоскости α, которые, во-первых, лежат по ту сторону от прямой, содержащей луч h, что и любая точка луча k, и, во-вторых, лежат по ту сторону от прямой, содержащей луч k, что и любая точка луча h.

III, 4. Пусть даны на плоскости α, прямая а’ на этой же или на какой-либо другой плоскости α’ и задана определённая сторона плоскости α’ относительно прямой а’. Пусть h’ – луч прямой а’, исходящий из некоторой точки О’. Тогда на плоскости α’ существует один и только один луч k’ такой, чтоконгруэнтен, и при этом все внутренние точкилежат по заданную сторону от прямой а’. Каждый угол конгруэнтен самому себе.

III, 5. Пусть А, В и С – три точки, не лежащие на одной прямой, А’, B’ и С’ – другие три точки, также не лежащие на одной прямой. Тогда если отрезок АВ конгруэнтен отрезку А’B’, отрезок АС конгруэнтен отрезку А’C’ и конгруэнтен, токонгруэнтениконгруэнтен

Договоримся теперь о сравнении неконгруэнтных отрезков и углов.

Будем говорить, что отрезок АВ больше отрезка А’B’, если на прямой, определяемой точками А и В, найдётся лежащая между этими точками точка С такая, что отрезок АС конгруэнтен отрезку А’В’. Будем говорить, что отрезок АВ меньше отрезка А’B’, если отрезок А’B’ больше отрезка АВ.

Символически тот факт, что отрезок АВ меньше отрезка А’B’ (конгруэнтен отрезку А’B’) будем записывать так:

АВ<A’B’ (AB=A’B’).

Будем говорить, что больше, если в плоскости, определяемой, найдётся луч ОС, все точки которого являются внутренними точками, такой, чтоконгруэнтен. Будем говорить, чтоменьше, еслибольше.

С помощью аксиом принадлежности, порядка и конгруэнтности можно доказать целый ряд теорем элементарной геометрии. Сюда относятся: 1) три широко известные теоремы о конгруэнтности (равенстве) двух треугольников, 2) теорема о конгруэнтности вертикальных углов, 3) теорема о конгруэнтности всех прямых углов, 4) теорема о единственности перпендикуляра, опущенного из точки на прямую, 5) теорема о единственности перпендикуляра, проведённого к данной точке прямой, 6) теорема о внешнем угле треугольника, 7) теорема о сравнении перпендикуляра и наклонной.