34. Методика обучения сравнению от 2 до 5 предметов в среднем и 10 предметов в старшем дошкольном возрасте, упорядочиванию (сериации) в порядке возрастания и убывания.
К моменту перехода в подготовительную к школе группу дети должны научиться выделять измерения (длину, ширину, высоту) и оценивать размер предметов с точки зрения 2-3 измерений.
Для выделения данных величин используют упражнения в сопоставлении предметов. От сопоставления предметов, отличающихся одним измерением, дети переходят к сопоставлению предметов по 2-3 измерениям. ("Какая дощечка длиннее (короче)? Какая шире (уже)? Какая толще (тоньше)?")
Расширяется круг сопоставляемых предметов. Используют предметы, с которыми дети постоянно встречаются в различной деятельности (ленты, шарфики, скакалки, шнурки, ремешки, лыжи, коробки и пр.).
Сопоставление величин осуществляется не изолированно, а в системе рассмотрения других свойств предметов (их предназначение, части, цвет, материал и др.). Это имеет существенное значение для умственного развития детей.
Упражнения в сопоставлении величин значительно усложняются. Дети не только определяют размерные отношения между наглядно представленными предметами, но и воссоздают подобные отношения по представлению. Воспитатель дает им, например, такие задания: нарисовать 2 дорожки, чтобы одна из них была длиннее другой; нарисовать 2 ленточки одинаковой длины, разной ширины или одинаковой длины и ширины и т. п.
Особенно полезны упражнения, включающие изменение размера предметов. Используют 2 вида таких упражнений: изменение отдельных измерений объекта при сохранении его общей массы и уравнивание размеров предметов.
Производя изменение отдельных измерений, дети видят, что изменение одного из измерений при сохранении массы в целом ведет к изменению другого измерения. Например, столбик пластилина сделали длиннее (раскатали), зато он стал тоньше.
Данное упражнение способствует развитию различения детьми отдельных измерений. Упражняя в уравнивании размеров предметов, предлагают подобрать, а позднее изготовить предмет, равный образцу. Например, подобрать полоску для ремонта книги (коробки), палочку для вертушки и пр. или сделать ленточки для игры в "пятнашки", изготовить прямоугольник (квадрат).
Полезно предлагать детям составить предмет, равный образцу, из 2 других. Например, предложить ребенку подобрать 2 дощечки, длина которых вместе равна длине палочки-мерки, в свою очередь равной длине крыши домика, и т. п.
Если предметы непосредственно сопоставить нельзя, то вводится посредник - мерка. В качестве условной мерки используют разные предметы: полоску бумаги, кусок веревки, тесьму и пр. В этот период используют мерку большего размера, чем измеряемый предмет.
На мерке отмечают части, занимаемые предметами. Расстояние между отметками показывает, на сколько один предмет длиннее (шире, выше) другого. Каждый предмет может быть измерен отдельной меркой.
Сопоставление мерок позволяет уточнить разницу в размере предметов. Например, длина и ширина предмета могут быть сравнены с помощью 2 веревок, соответственно равных его длине и ширине.
Научившись пользоваться меркой-посредником, дети могут сравнивать размеры предметов, которые непосредственно сопоставить нельзя, например, с помощью планки сравнить длину 2 столов.
Особое место в старшей группе отводят упражнениям в группировке и упорядочивании предметов по отдельным измерениям (по длине, ширине и др.).
Усложнение упражнений в построении ряда величин в старшей группе состоит в том, что
- сопоставляют большее количество предметов (до 10 шт.), а разница их размеров еще более уменьшается (от 3 до 1 см);
- включают упражнения в подборе и построении в ряд не отдельных предметов, а пар предметов;
- используют предметы, отличающиеся уже не только одним, но и 2-3 измерениями.
- одни и те же предметы размещаются в ряд то по одному, то по другому признаку (например, палочки сначала раскладываются по длине, а затем по толщине или цилиндры сначала расставляют в порядке возрастающей высоты, а затем в порядке возрастающей толщины).
- указанный воспитателем предмет в ряду сравнивается не только с соседним, но и со всеми предшествующими ему или последующими. В результате этого ребенку становится понятным, что каждый элемент в ряду меньше (больше), чем все предыдущие, и больше (меньше), чем все последующие.
Группируя предметы по длине, дети помещают в одну группу все предметы одинаковой длины, несмотря на их различия в высоте и ширине. Выясняют, чем похожи и чем отличаются предметы, попавшие в одну группу, почему в одной группе оказались предметы разной высоты и т. п.
Дети видят, как изменяется место предмета среди других в зависимости от того, по какому признаку они сопоставляются и упорядочиваются в ряд. Например, коричневый ремешок был первым, когда ремешки раскладывали в ряд от самого длинного до самого короткого, а когда ремешки разложили в ряд от самого широкого до самого узкого, он оказался на 3 месте.
Постепенно у детей формируется умение самостоятельно выделять признаки, по которым можно сравнить предметы. Они научаются последовательно сопоставлять предметы по выделенному признаку, не переключаясь на другие.
Полезно побуждать ребят еще до выполнения практического действия делать предположения (планировать действие). С этой целью надо ставить вопросы: "По какому признаку можно сгруппировать предметы? В каком порядке строить ряд предметов? Как выбирать нужный по порядку предмет?" Выполняя соответствующие действия, дети как бы проверяют верность предположений. Постепенно ребенок учится осознанно пользоваться правилом выбора следующего элемента при построении ряда. Выбирать надо каждый раз самый большой или самый маленький предмет среди всех оставшихся в зависимости от того, в каком порядке решили разместить предметы.
Пятилетних детей знакомят с некоторыми свойствами упорядоченного множества предметов.
Свойства ряда выделяются непосредственно в ходе практических действий.
Построив ряд, дети находят самый большой (длинный, высокий) или самый маленький (короткий, низкий и т. д.) предмет в ряду, а затем называют предметы по порядку, шагая по ряду то вверх, то вниз (самая низкая, выше, еще выше, самая высокая и т. п.), фиксируя определенность направления ряда.
Сравнение каждого из элементов ряда со смежными, а несколько позднее со всеми предшествующими и последующими позволяет детям понять относительность значения признака. ("Каждый элемент в ряду больше, чем все предыдущие, и меньше, чем все последующие, или наоборот".) Они перечисляют: красная полоска длиннее синей, голубей, белой, но короче желтой и зеленой и т. п.
Подобные упражнения подводят детей к осознанию свойства транзитности (если а > Ь и Ь > с, то а > с) (транзитивный - способный иметь прямое дополнение), которым обладает отношение порядка. Например, установив, что зеленая пирамидка выше красной, а красная - выше синей и т. д., дети приходят к выводу, что зеленая пирамидка выше и синей, и других пирамидок, стоящих за ней.
Для закрепления усвоения детьми свойства транзитивности используют игры, требующие от детей смекалки и сообразительности.
«Кто первый?» - «Мишки (или матрешки) забыли, кто за кем стоял. Первый должен быть меньше второго, а второй меньше третьего. Какого размера первый мишка? А третий?»
«Чья коробочка?» - «У меня три коробочки от заводных игрушек: курочки, цыпленка и утенка. Курочка больше утенка, утенок больше цыпленка. Какая коробка утенка? Поместится ли курочка в коробку утенка? А утенок в коробку цыпленка?»
«Угадайте, кто выше (ниже) ростом» - «Петя выше Саши, а Саша выше Коли. Кто из мальчиков самого низкого роста? А самого высокого?»
Вначале дети решают такие задачи, опираясь на наглядный материал, а позднее - лишь на основе словесного описания. Наглядность применяют для доказательства правильности ответа. Воспитатель обращает внимание на постоянство разности между соседними членами упорядоченного ряда. Дети с помощью мерки сравнивают размеры предметов специально составленного ряда и убеждаются в том, что любой предмет в ряду (начиная со второго) на одну и ту же величину больше (меньше) соседнего.
Определить размер предмета (длину, ширину) ребята могут, прикладывая одну к другой несколько равных мерок. Например, оказывается, что длина первой полосочки - 1, второй - 2, третьей - 3 мерки и т. д.; сравнив результаты измерения, дети устанавливают, что каждая полосочка на одну и ту же длину мерки больше или меньше соседней полоски.
Для закрепления знаний о свойствах упорядоченного ряда используют упражнения, требующие от детей проявления смекалки, сообразительности. Например, можно дать задания:
достроить ряд,
построить его от промежуточного элемента,
нарисовать ряд до и после его упорядочивания,
найти место пропущенного или лишнего элемента в ряду,
вставить в уже построенный ряд промежуточные элементы,
преобразовать восходящий ряд в нисходящий и наоборот,
найти соответствие между несколькими рядами,
составить ряд из парных элементов и т.д.
- Методика математического развития (экзамен)
- 2. Предмет и задачи курса "Методика математического развития и обучения математики". Связь методики математического развития с другими науками.
- 3. Этапы развития методики математического развития: эмпирический, классический, современный.
- 5. Задачи математического развития дошкольников.
- 6. Взаимосвязь понятий "развитие", "обучение", "воспитание". Математические способности.
- 7. Методы и приёмы математического развития дошкольников.
- 8. Средства математического развития, роль развивающей среды
- 9. Авторские и структурированные пособия по математическому развитию дошкольников.
- 10. Формы организации работы по математическому развитию.
- 11. Соотношение специально- организованного обучения, совместной и самостоятельной деятельности в организации математического развития дошкольников.
- 12. Требования к организации занятий в разных возрастных группах.
- 2. Гностическими умениями
- 15. Концепции развития количественных представлений.
- 16. Особенности восприятия дошкольниками количественных представлений в разных возрастных группах.
- Сравнения множеств путём установления между ними взаимного соответствия (при помощи приёмов наложения и приложения)
- Приём наложения машинок.
- 18. Методика обучения количественному счёту в разных возрастных группах: этапы, приемы и навыки счета.
- 19. Совершенствование навыков счета путем обучения отсчитыванию из большего количества по образцу и по названному числу в разных возрастных группах.
- 20. Совершенствование навыков счета через обучение счету с участием различных анализаторов (счет звуков, движений, счет по осязанию) в разных возрастных группах.
- 21. Формирование понятия числа как количественной характеристики множеств. Виды работы по преодолению феномена Пиаже.
- 22. Связи и отношения между числами натурального ряда. Методика обучения сравнению смежных чисел.
- 23. Методика обучению порядковому счету в среднем и старшем дошкольном возрасте.
- 24. Методика ознакомления с количественным составом числа из отдельных единиц в старшем дошкольном возрасте.
- 25. Методика ознакомления с составом числа из двух меньших чисел и разложением числа на два меньших.
- 26. Методика ознакомления с делением целого на равные части, установления отношений "целое" и "часть".
- 27. Методика ознакомления с цифрами и арифметическими знаками.
- 28. Методика ознакомления с монетами.
- 2. Практическая часть
- 3. Заключение.
- 29. Методика обучения решению и составлению арифметических задач: виды, этапы работы, различные подходы к методике обучения решению и составлению арифметических задач.
- 31. Свойства величины, особенности восприятия дошкольниками.
- 32. Способы сравнения по величине: непосредственные, опосредованные, при помощи глазомера.
- 33. Методика обучения сравнению 2 предметов по величине в младшем и дошкольном возрасте.
- 34. Методика обучения сравнению от 2 до 5 предметов в среднем и 10 предметов в старшем дошкольном возрасте, упорядочиванию (сериации) в порядке возрастания и убывания.
- Заданиям придают игровой характер, используя игры:
- 35. Методика обучению измерения протяжённостей, объема жидких и сыпучих тел условными мерками и общепринятыми мерами в старшем и подготовительном дошкольном возрасте.
- 36. Понятие формы и геометрической фигуры, особенности восприятия дошкольниками.
- 37. Программные задачи и приемы ознакомления с геометрическими фигурами в младшем, среднем и старшем дошкольном возрасте.
- 38. Методика формирования обобщенных понятий четырехугольник и многоугольник.
- 39. Использование различных видов материала при формировании представлений о форме и геометрических фигурах.
- 40. Ориентировка в пространстве. Особенности пространственных представлений у дошкольников.
- 41. Система работы по формированию пространственных представлений у дошкольников.
- 42. Методика формирования ориентировки в пространстве в разных возрастных группах.
- 44. Программные задачи и методика работы по развитию временных представлений в разных возрастных группах.
- 45. Ознакомление с календарем как системой мер времени.
- 46. Развитие чувства времени у дошкольников.
- 1 Этап.
- 2 Этап.
- 3 Этап.
- 4 Этап.
- 48. Особенности организации работы в разных возрастных группах.
- 50. Особенности работы с одаренными детьми.
- 51. Связь дошкольного учреждения и семьи по математическому развитию ребенка.
- 52. Преемственность в работе дошкольного учреждения и 1 класса школы по математическому развитию детей: формы и содержание.
- 53. Показатели математической готовности ребенка к школе.