logo search
Шпаргалка по Методике математического развития

7. Методы и приёмы математического развития дошкольников.

Разные науки используют понятие метода в связи со своей спецификой. Так, философская наука трактует метод (греч. metodos — буквально «путь к чему-то») в самом общем значении как способ достижения цели, определенным обра­зом упорядоченная деятельность.

Метод есть способ воспро­изведения, средство познания изучаемого предмета. В основе методов лежат объективные законы действительности. Метод неразрывно связан с теорией.

В педагогике метод характеризуется как целенаправлен­ная система действий воспитателя и детей, соответствую­щих целям обучения, содержанию учебного материала, са­мой сущности предмета, уровню умственного развития ре­бенка.

В теории и методике математического развития детей термин «метод» употребляется в двух смыслах: широком и узком. Метод может обозначать исторически сложившийся подход к математической подготовке детей в детском саду (монографический, вычислительный и метод взаимно-об­ратных действий).

В педагогике существует концепция, которая базируется на использовании одного метода (монометода). К такой кон­цепции относится теория поэтапного формирования умст­венной деятельности (П. Я. Гальперин, Н. Ф. Талызина). Процесс формирования деятельности рассматривается авто­рами как процесс передачи социального опыта. Это проис­ходит не исключительно путем взаимодействия учителя с учащимися, а скорее через интериоризацию соответствую­щей деятельности, формирование ее сначала во внешней ма­териальной форме, а затем преобразование во внутреннюю психическую деятельность.

Однако форсирование какого-либо одного метода обуче­ния не получило должного подтверждения на практике. Наиболее рациональным, как показывает опыт, является со­четание разнообразных методов.

При выборе методов учитываются:

Теория и практика обучения накопила определенный опыт использования разных методов обучения в работе с деть­ми дошкольного возраста. При этом классификация методов используется с опорой на средства обучения.

В начале XX в. классификация методов в основном осуществлялась по источнику получения знаний — это были словесные, на­глядные, практические методы.

Практические методы (упражнения, опыты, продуктивная деятельность) наиболее соответствуют возрастным особен­ностям и уровню развития мышления дошкольников. Сущ­ностью этих методов является выполнение детьми действий, которые состоят из рада операций. Например, счет предметов: называть числительные по порядку, соотносить каждое числи­тельное с отдельным предметом, показывая на него пальцем или останавливая взгляд на нем, последнее числительное соот­носить со всем количеством, запоминать итоговое число.

Однако излишнее использование практических методов, задержка на уровне практических действий может отрицатель­но сказываться на развитии ребенка.

Практические методы характеризуются прежде всего са­мостоятельным выполнением действий, применением ди­дактического материала. На базе практических действий у ребенка возникают первые представления о формируемых знаниях. Практические методы обеспечивают выработку умений и навыков, позволяют широко использовать приоб­ретенные умения в других видах деятельности.

Наглядные и словесные методы в обучении математике не яв­ляются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в ма­тематическом развитии детей.

К наглядным методам обучения относятся: демонстра­ция объектов и иллюстраций, наблюдение, показ, рассмат­ривание таблиц, моделей.

К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. Часто на одном занятии используются разные методы в разном их сочетании.

Составные части метода называются методическими приемами.

Основными из них, используемыми на занятиях по математике, являются: накладывание, прикладывание, дидактичекие игры, сравнение, указания, вопросы к детям, обследование и т. д.

Между методами и методическими приемами, как изве­стно, возможны взаимопереходы. Так, дидактическая игра может быть использована как метод, особенно в работе с младшими детьми, если воспитатель с помощью игры фор­мирует знания и умения, но может — и как дидактический прием, когда игра используется, например, с целью повыше­ния активности детей («Кто быстрее?», «Наведи порядок»).

Широко распространенным является методический прием — показ. Этот прием является демонстрацией, он может характеризоваться как наглядно-практически-дей­ственный.

К показу предъявляются определенные требова­ния: четкость и расчлененность; согласованность действия и слова; точность, краткость, выразительность речи.

Одним из существенных словесных приемов в обучении детей математике является инструкция, отражающая суть той деятельности, которую предстоит выполнить детям. В стар­шей группе инструкция носит целостный характер, дается до выполнения задания. В младшей группе инструкция должна быть короткой, нередко дается по ходу выполнения действий.

Особое место в методике обучения математике занимают вопросы к детям. Они могут быть репродуктивно-мнемические, репродуктивно-познавательные, продуктивно-позна­вательные. При этом вопросы должны быть точными, конк­ретными, лаконичными. Для них характерна логическая по­следовательность и разнообразие формулировок. В процессе обучения должно быть оптимальное сочетание репродуктив­ных и продуктивных вопросов в зависимости от возраста де­тей, изучаемого материала. Вопросы ценны тем, что они обеспечивают развитие мышления. Следует избегать под­сказывающих и альтернативных вопросов.

Система вопросов и ответов детей в педагогике называется беседой. В ходе беседы воспитатель следит за правильным ис­пользованием детьми математической терминологии, гра­мотностью речи. Это сопровождается различными пояснени­ями. Благодаря пояснениям уточняются непосредственные восприятия детей. Например, воспитатель учит детей обсле­довать геометрическую фигуру и при этом поясняет: «Возьми­те фигуру в левую руку — вот так, указательным пальцем пра­вой руки обведите, покажите стороны квадрата (прямоуголь­ника, треугольника), они одинаковы. У квадрата есть углы. Покажите углы». Или другой пример. Воспитатель учит детей измерению, показ практических действий сопровождает по­яснениями, как следует наложить меру, обозначить ее конец, снять ее, снова наложить. Потом показывает и рассказывает, как подсчитываются меры.

Чем старше дети, тем большее значение в их обучении имеют проблемные вопросы и проблемные ситуации.

Проб­лемные ситуации возникают тогда, когда:

Многочисленные экспериментальные исследования дока­зали, что при выборе метода важным является учет содержания формируемых знаний. Так, при формировании пространствен­ных и временных представлений ведущими методами явля­ются дидактические игры и упражнения (Т. Д. Рихтерман, О. А. Фунтикова и др.). При ознакомлении детей с формой и величиной наряду с различными игровыми методами и прие­мами используются наглядные и практические.

Место игрового метода в процессе обучения оценивается по-разному. В последние годы разработана идея простейшей логической подготовки дошкольников, введения их в область логико-математических представлений (свойства, операции с множествами) на основе использования специальной серии «обучающих» игр (А. А. Столяр). Эти игры ценны тем, что они актуализируют скрытые интеллектуальные возможности де­тей, развивают их (Б. П. Никитин).

Обеспечить всестороннюю математическую подготовку детей все-таки удается при умелом сочетании игровых мето­дов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен.