9. Авторские и структурированные пособия по математическому развитию дошкольников.
Авторские методики раннего развития сейчас очень популярны. Это и понятно, ведь в раннем возрасте ребенок впитывает все, как губка, схватывая буквально на лету большой объем информации. Игры Никитина и Воскобовича, блоки Дьенеша и палочки Кюизенера, игры и книги Лены Даниловой и Марии Монтессори, методики обучения чтению Домана-Маниченко, Зайцева и Чаплыгина являются
помощниками в раннем развитии ребенка.
Структурированные и универсальные дидактические пособия: логические блоки Дьениша, цветные палочки Кьюизенера.
Особая роль на современном этапе обучения отводится дидактическим средствам: логическим блокам Дьенеша и палочкам Кюизенера. Эти дидактические средства используются в разных странах. Отечественным педагогам они тоже знакомы, но в практической работе с детьми используются еще не достаточно. Причины этого в недооценке развивающих возможностей этих дидактических материалов, а так же в недостаточном количестве соответствующей методической литературы.
Логические блоки Дьенеша
Набор логических блоков состоит из 48 объемных пластмассовых геометрических фигур, различающихся по:
- цвету - синие, желтые, красные,
- форме - круги, квадраты, треугольники, прямоугольники,
- размеру - большие, маленькие,
- толщине - тонкие, толстые.
Таким образом, каждая фигура характеризуется четырьмя свойствами. В наборе нет даже двух фигур, одинаковых по всем свойствам.
Основная цель – научить ребенка решать логические задачи на разбиение по свойствам.
Число игр с блоками Дьенеша велико. Самые маленькие могут с помощью блоков познакомиться с простейшими геометрическими формами, понятиями "большой-маленький", "толстый-тонкий", "такой же","не такой". Для более старших детей предлагаются игры на сравнение, обобщение, классификацию предметов по нескольким признакам. Игры, где предлагается кодировать - декодировать свойства блоков с помощью специальных символов.
В процессе разнообразных действий с логическими блоками Дьенеша (разбиение, выкладывание по определенным правилам, перестроение) дети овладевают различными мыслительными умениями.
К их числу относятся умение анализа, абстрагирования, сравнения, классификации, обобщения, кодирования, а так же логические операции «не», «и», «или».
Комплект логических блоков дает возможность вести детей в их развитии сначала осваивать умения выявлять и абстрагировать в предметах одно свойство (цвет, форму, размер, толщину), сравнивать, классифицировать и обобщать предметы по каждому из этих свойств.
Затем они овладевают умениями анализировать, сравнивать, классифицировать и обобщать предметы сразу по двум свойствам (цвету и форме, форме и размеру, размеру и толщине и т.д.), несколько позже – по трем (цвету, форме и размеру; форме, размеру и толщине; цвету, размеру и толщине) и по четырем (цвету, форме, размеру и толщине).
Палочки Кюизенера
Игры с палочками Кюизенера проводятся так же в системе, они служат для выработки навыков счета, измерения, вычислений, выполнение разнообразных практических действий.
Комплект состоит из 116 пластмассовых призм (палочек) 10-ти различных цветов и длин. Каждая палочка – это число, выраженное цветом и величиной. Наименьшая палочка имеет длину 10 мм и является кубом, следующие с последовательным увеличением по длине на 10 мм.
Использование чисел в цвете позволяет развивать у дошкольников представление о числе на основе счета и измерения. К выводу, что число появляется на основе счета и измерения, дети приходят на базе практической деятельности, в результате разнообразных упражнений.
С помощью цветных палочек детей также легко подвести к осознанию отношений больше - меньше, больше – меньше на 1,2,3 .., научить делить целое на части и измерять объекты условными мерками, поупражнять в запоминании состава чисел из единиц и меньших чисел, подойти вплотную к сложению, умножению, вычитанию и делению чисел.
Выделение цвета и длины палочек поможет детям освоить ключевые для их возраста средства познания – сенсорные эталоны (эталоны цвета, размера) и такие способы познания, как сравнение, сопоставление предметов (по цвету, длине, ширине, высоте).
Кроме этого, играя с палочками, дети осваивают такие понятия как «левое», «длинное», «между», «каждый», «одна из…», «какой-нибудь», «быть одного и того же цвета», «быть не голубого цвета», «иметь одинаковую длину» и др.
Пособие Математический планшет ("Школа интересных наук"
Развитие мелкой моторики, азы геометрии
Математический планшет – это возможность исследовательской деятельности для ребенка, содействие его психосенсомоторному когнитивному (познавательному) развитию, а также развитию творческих способностей. Математический планшет – это поле со штырьками для рисования резиночками.
Занимательные задачи, игры с буквами и цифрами будут способствовать развитию интереса, любознательности. Математический планшет ("Школа интересных наук") дает возможность ребенку на чувственном опыте освоить некоторые базовые концепции планиметрии: периметр, площадь, фигура и т. д. , развивать индуктивное и дедуктивное мышление, дать представление о симметрии, трансформации размера, формы. Математический планшет даст возможность в играх осваивать систему координат.
РАЗВИВАЮЩИЕ ИГРУШКИ И ИГРЫ
Развивающие игры Никитина
Они обладают характерными особенностями:
Каждая игра Никитина представляет собой набор задач, которые ребенок решает с помощью кубиков, кирпичиков, квадратов из дерева или пластика, деталей конструктора-механика и т.д.
Задачи даются ребенку в различной форме: в виде модели, плоского рисунка, рисунка в изометрии, чертежа, письменной или устной инструкции и т.п., и таким образом знакомят его с разными способами передачи информации.
Задачи расположены примерно в порядке возрастания сложности, т.е. в них использован принцип народных игр: от простого к сложному.
Задачи имеют очень широкий диапазон трудностей: от доступных иногда 2-3-летнему малышу до непосильных среднему взрослому. Поэтому игры Никитина могут возбуждать интерес в течение многих лет (до взрослости).
Постепенное возрастание трудности задач в играх Никитина позволяет ребенку идти вперед и совершенствоваться самостоятельно, т.е. развивать свои творческие способности, в отличие от обучения, где все объясняется и где формируются только исполнительские черты в ребенке.
Решение задачи предстает перед ребенком не в абстрактной форме ответа математической задачи, а в виде рисунка, узора или сооружения из кубиков, кирпичиков, деталей конструктора, т.е. в виде видимых и осязаемых вещей. Это позволяет сопоставлять наглядно "задание" с "решением" и самому проверять точность выполнения задания.
Большинство творческих развивающих игр Никитина не исчерпывается предлагаемыми заданиями, а позволяет детям и родителям составлять новые варианты заданий и даже придумывать новые развивающие игры, т.е. заниматься творческой деятельностью более высокого порядка.
Игры Никитина позволяют каждому подняться до "потолка" своих возможностей, где развитие идет наиболее успешно.
Арифметический счет
Эта игрушка - своеобразные счеты. Колечки перемещаются по аркам из толстой проволоки. Всего 10 арок разной высоты. На первой арке - 1 колечко, на второй - 2, на последней - 10. Под каждой аркой написана цифра, соответствующая числу колец на ней.
Игрушка очень полезна при обучении счету. Для начала можно просто пересчитывать колечки. Потом познакомить с изображением цифр. И, наконец, можно решать простые примеры, в этом очень помогает разделитель по середине. Например, оставляем на проволоке с цифрой 5 три колечка, спрашиваем ребенка: "Сколько колечек не хватает? (разделитель по середине не дает видеть, что "происходит" с другой стороны). Ответив, ребенок может сам проверить себя.
Игра с волшебными наклейками. Волшебная геометрия
Игра состоит из большого картонного поля, 34х48 см в разложенном виде, и набора наклеек. Наклейки многоразовые, то есть их можно многократно приклеивать-отклеивать.
На поле игры "Волшебная геометрия" изображено море с небольшими островками. В набор наклеек входит лодка, капитан, помощник капитана и динозаврик, который может жить на одном из островов, а также множество геометрических фигур различных форм, цветов и размеров. Можно давать ребенку различные задания: сделать один остров островом Треугольников, а второй - островом Овалов, разделить фигуры по размеру ... Геометрические фигуры также можно использовать для постройки различных строений и сложных фигур.
Игра с волшебными наклейками. Волшебный счет
Игра состоит из большого картонного поля, 34х48 см в разложенном виде, и набора наклеек. Наклейки многоразовые, то есть их можно многократно приклеивать-отклеивать.
Поле игры "Волшебная счет" неожиданное, это не просто цветной лист или школьная доска, как можно было бы ожидать, а уголок природы. Здесь и пруд, и кусочек леса, и плодовые деревья, и грядки. Наклейки позволят "оживить" картинку, среди них грибы, морковки, яблоки, ежики, лягушки ...
Всех предметов несколько, их удобно считать, сравнивать количество. Кроме того, в комплект входят наклейки цифры от 0 до 9, знаки +, =, <, >.
Играя, можно предложить ребенку решить простейшие задачи, например, на кочках сидело 3 лягушки, одна ускакала, сколько осталось, или мальчик нашел 2 гриба, а потом еще 3, сколько всего грибов нашел мальчик.
Пособие «Пять в кубе»
Для детей двух-трёх лет кубики — прекрасный строительный материал. В этом же возрасте малыши охотно знакомятся с буквами и цифрами, выкладывают с помощью родителей первые слова.
C четырёх-пятилетними детьми уже можно составлять примеры на сложение и вычитание, составлять и прочитывать многозначные числа. В школе с кубиками намного легче будет изучать сложение, вычитание, умножение (в том числе и столбиком), деление, составлять уравнения.
- Методика математического развития (экзамен)
- 2. Предмет и задачи курса "Методика математического развития и обучения математики". Связь методики математического развития с другими науками.
- 3. Этапы развития методики математического развития: эмпирический, классический, современный.
- 5. Задачи математического развития дошкольников.
- 6. Взаимосвязь понятий "развитие", "обучение", "воспитание". Математические способности.
- 7. Методы и приёмы математического развития дошкольников.
- 8. Средства математического развития, роль развивающей среды
- 9. Авторские и структурированные пособия по математическому развитию дошкольников.
- 10. Формы организации работы по математическому развитию.
- 11. Соотношение специально- организованного обучения, совместной и самостоятельной деятельности в организации математического развития дошкольников.
- 12. Требования к организации занятий в разных возрастных группах.
- 2. Гностическими умениями
- 15. Концепции развития количественных представлений.
- 16. Особенности восприятия дошкольниками количественных представлений в разных возрастных группах.
- Сравнения множеств путём установления между ними взаимного соответствия (при помощи приёмов наложения и приложения)
- Приём наложения машинок.
- 18. Методика обучения количественному счёту в разных возрастных группах: этапы, приемы и навыки счета.
- 19. Совершенствование навыков счета путем обучения отсчитыванию из большего количества по образцу и по названному числу в разных возрастных группах.
- 20. Совершенствование навыков счета через обучение счету с участием различных анализаторов (счет звуков, движений, счет по осязанию) в разных возрастных группах.
- 21. Формирование понятия числа как количественной характеристики множеств. Виды работы по преодолению феномена Пиаже.
- 22. Связи и отношения между числами натурального ряда. Методика обучения сравнению смежных чисел.
- 23. Методика обучению порядковому счету в среднем и старшем дошкольном возрасте.
- 24. Методика ознакомления с количественным составом числа из отдельных единиц в старшем дошкольном возрасте.
- 25. Методика ознакомления с составом числа из двух меньших чисел и разложением числа на два меньших.
- 26. Методика ознакомления с делением целого на равные части, установления отношений "целое" и "часть".
- 27. Методика ознакомления с цифрами и арифметическими знаками.
- 28. Методика ознакомления с монетами.
- 2. Практическая часть
- 3. Заключение.
- 29. Методика обучения решению и составлению арифметических задач: виды, этапы работы, различные подходы к методике обучения решению и составлению арифметических задач.
- 31. Свойства величины, особенности восприятия дошкольниками.
- 32. Способы сравнения по величине: непосредственные, опосредованные, при помощи глазомера.
- 33. Методика обучения сравнению 2 предметов по величине в младшем и дошкольном возрасте.
- 34. Методика обучения сравнению от 2 до 5 предметов в среднем и 10 предметов в старшем дошкольном возрасте, упорядочиванию (сериации) в порядке возрастания и убывания.
- Заданиям придают игровой характер, используя игры:
- 35. Методика обучению измерения протяжённостей, объема жидких и сыпучих тел условными мерками и общепринятыми мерами в старшем и подготовительном дошкольном возрасте.
- 36. Понятие формы и геометрической фигуры, особенности восприятия дошкольниками.
- 37. Программные задачи и приемы ознакомления с геометрическими фигурами в младшем, среднем и старшем дошкольном возрасте.
- 38. Методика формирования обобщенных понятий четырехугольник и многоугольник.
- 39. Использование различных видов материала при формировании представлений о форме и геометрических фигурах.
- 40. Ориентировка в пространстве. Особенности пространственных представлений у дошкольников.
- 41. Система работы по формированию пространственных представлений у дошкольников.
- 42. Методика формирования ориентировки в пространстве в разных возрастных группах.
- 44. Программные задачи и методика работы по развитию временных представлений в разных возрастных группах.
- 45. Ознакомление с календарем как системой мер времени.
- 46. Развитие чувства времени у дошкольников.
- 1 Этап.
- 2 Этап.
- 3 Этап.
- 4 Этап.
- 48. Особенности организации работы в разных возрастных группах.
- 50. Особенности работы с одаренными детьми.
- 51. Связь дошкольного учреждения и семьи по математическому развитию ребенка.
- 52. Преемственность в работе дошкольного учреждения и 1 класса школы по математическому развитию детей: формы и содержание.
- 53. Показатели математической готовности ребенка к школе.