30. Методика изучения производной, интеграла и их применений.
При изучении темы "Производная" проявляются известные трудности, связанные с осуществлением предельных переходов. Важно поэтому придать изложению возможно более наглядный и конкретный характер.
Определению производной функции как предела разностного отношения предшествует рассмотрению особенностей поведения графиков гладких функций, приводящее к понятию касательной. Производная функции появляется сначала как тангенс угла наклона касательной к оси абсцисс. Тем самым с понятием производной на первом этапе связывается наглядный образ – касательная. Предельные переходы появляются как средство вычисления производной.
При изучении применения производной существенная роль отводится наглядным представлениям о производной. Опора на геометрический и механический смысл делают интуитивно ясными критерии возрастания и убывания функций, признаки максимума минимума.
Методическая схема изучения производной
Привести подводящую задачу, раскрывающую физический смысл понятия производной: свободное падение тела, которое не является равномерным.
Сформулировать определение понятия производной.
Так как в определении отсутствует понятие предела, то первоначально следует сформировать у учащихся понятие приращения как изменения и аргумента и функции. После рассмотрения геометрического смысла производной вводим опред.
Конкретизировать понятие производной (путём вычисления производной по определению: выяснение её геометрического смысла, графическое отыскание производной)
Методика введения понятия интеграл
• Определение криволинейной трапеции.
Фигуру, ограниченную на отрезке [ a ; b ] непрерывной и не меняющей на нём знака функцией f ( x ), осью Ох и прямыми x = a , x = b называют криволинейной трапецией. { Обратить внимание учащихся на примеры криволинейных трапеций}
• Задача о площади криволинейной трапеции.
Для вычисления площади этой трапеции разобьём отрезок [ a ; b ] на n отрезков и на каждом из них построим прямоугольник. Площадь каждого из них равна произведению высоты на основание f ( x i )? x , где ? x = x i +1 – x i . Площадь всей трапеции равна сумме площадей всех прямоугольников
Sn = f ( x 1 )? x 1 + f ( x 2 )? x 2 + … f ( x n )? x n .
• Понятие интеграла.
Но эта формула даёт лишь приближённое значение площади. Точное значение площади мы получим как предел этой суммы.
, где ? x 0. Этот предел и называют определённым интегралом и обозначают f ( x ) – подинтегральная функция, а и b – нижний и верхний пределы интегрирования.
• Формула Ньютона – Лейбница
Теорема . Пусть функция f ( x ) определена и непрерывна на отрезке [ a ; b ], а определённая и непрерывная на отрезке [ a ; b ] функция F ( x ) – одна из её первообразных. Тогда имеет место формула… Эта формула носит название формулы Ньютона –Лейбница. Она позволяет во многих случаях просто вычислять определённый интеграл.
- 1. Теория и методика обучения математики. Психологические и педагогические основы преподавания математики.
- 2. Целостный процесс обучения математики и его существенные характеристики.
- 3. Методическая деятельность учителя математики.
- 1. Решение проблем практического характера:
- 5. Цели обучения математике. Проблемы школ и классов с математической специализацией.
- 4. Математика как наука и как предмет. Актуальные проблемы теории и методики обучения математики.
- 6. Методы и формы обучения.
- 7. Методы обучения математике, их классификация.
- 1. Скаткин, Лернер (в основе уровни позн д уч-ся)
- 3. Классификация Черкасова Столяра
- 4. Классификация Колягина
- 8. По уровням самостоятельной активности учащихся.
- 8. Методы научного познания в школьном курсе математики.
- 9. Анализ и синтез как методы научного познания, их применение при обучении математике. Индукция и дедукция в преподавании математики.
- 10. Урок - основная форма обучения. Основные требования к современному уроку математики. Типы уроков по математике и их структура.
- 11. Методы проблемного обучения математике.
- 12. Аксиоматический метод и метод математического моделирования в обучении учащихся математике.
- 13. Планирование работы учителя. Этапы подготовки учителя математики к уроку.
- 14. Математические понятия. Методика их формирования.
- 15. Виды теорем и связи между ними. Необходимые и достаточные условия.
- 16. Методика работы над аксиомой, теоремой. Методы доказательства. Приведите примеры.
- 17. Задачи как применение теории и как средство развития математического мышления. Классификация задач. Методика обучения учащихся умению решать задачи.
- 19.Формы и методы оценки и контроля знаний по математике. Тестовые формы контроля.
- 20. Требования, предъявляемые к оценке знаний и умений учащихся по математике.
- 21. Пути систематизации и обобщения школьного курса математики.
- 18. Внеклассная работа по математике, ее цели и содержание.
- 22. Эвристика в обучении математике
- 28. Линия уравнений и неравенств в школьном курсе математики.
- 24. Логическое мышление учащихся при обучении математике
- 25. Развитие понятия числа в школьном курсе математики.
- 32. Методика изучения геометрических построений.
- 26. Учение о функциях в школьном курсе математики.
- 27. Изучение трансцендентных функций.
- 29. Методика изучения тождественных преобразований в средней школе.
- 31. Векторы в средней школе.
- 30. Методика изучения производной, интеграла и их применений.
- 33. Методика изучения геометрических преобразований
- 34. Методика изучения параллельности на плоскости и в пространстве.
- 35. Методика изучения перпендикулярности на плоскости и в пространстве.
- 36. Методика изучения площадей фигур и объемов тел.