3.2. Свойства растворов. Давление насыщенного пара над раствором
Переход молекул вещества из жидкости в газообразное состояние называется испарением. Обратный переход из газообразного состояния в жидкость называется конденсацией. Испарение твердых тел называют сублимацией.
По мере роста температуры жидкости доля молекул с высокой энергией увеличивается, а это значит, что скорость испарения также увеличивается. Испарение в открытом сосуде продолжается до тех пор, пока существует жидкость. Однако, если жидкость находится в замкнутом сосуде, то достигается равновесие, когда скорость испарения жидкости равна скорости конденсации пара. Это динамическое равновесие. Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным паром.
Молекулы пара, ударяющиеся о стенку сосуда, оказывают на неё давление. Давление, которое оказывает пар, находящийся в равновесии с жидкостью, называют давлением насыщенного пара этой жидкости. Это максимальное давление пара, которое развивается жидкостью при данной температуре. Давление насыщенного пара зависит от природы жидкости и температуры и не зависит от количества жидкости.
Давление насыщенного пара определяется числом молекул вещества, отрывающихся с поверхности жидкости за единицу времени. На поверхности раствора кроме молекул растворителя находятся молекулы растворённого нелетучего вещества. Поэтому число молекул растворителя, испаряющихся за единицу времени с единицы поверхности раствора, меньше, чем молекул испаряющихся с единицы поверхности растворителя. Следовательно, при одной и той же температуре давление насыщенного пара над раствором всегда будет ниже давления насыщенного пара над растворителем.
Количественно эта зависимость выражается законом Р. Рауля: «В идеальных растворах при постоянной температуре величина относительного понижения давления насыщенного пара растворителя над раствором равна молярной доле растворенного нелетучего вещества».
(Р0 – Р) / Р0 = N ,
где Р0 – давление насыщенного пара растворителя над растворителем,
Р – давление насыщенного пара растворителя над раствором,
N – мольная доля растворенного вещества.
Идеальный раствор – раствор, в котором межмолекулярные силы равны. Если вещества А и В образуют идеальный раствор, то силы взаимодействия между молекулами А…А, А…В и В…В равны.
Из закона Рауля следует, что пар над жидким раствором, состоящим из веществ А и В, содержит оба этих вещества, причём давление насыщенного пара каждого из веществ в смеси равно произведению мольной доли этого вещества на давление насыщенного пара над чистым веществом, т.е.:
для вещества А РА = NА· Р0А,
для вещества В РВ = NВ· Р0В,
где РА, РВ – давление насыщенного пара веществ А и В над раствором,
NА, NВ – мольная доля веществ А и В в растворе,
Р0А,Р0В – давление насыщенного пара веществ А и В над чистым веществом.
- Федеральное агентство по образованию Российской Федерации
- «Тюменский государственный нефтегазовый университет» в.М. Обухов химия
- Программа Введение
- I. Основные закономерности химических процессов
- 1. Термодинамика химических процессов
- 2. Кинетика химических процессов.
- 3.Химическое равновесие.
- II. Строение вещества
- 1. Строение атома.
- 2. Строение молекулы
- 3. Агрегатное состояние вещества
- III. Растворы.
- IV. Реакции в растворах
- V. Электрохимические процессы
- VI. Металлы. Коррозия металлов
- Литература
- Контрольные задания
- Варианты контрольного задания
- Введение
- I. Основные закономерности химических процессов
- 1.1. Термодинамика химических процессов
- Задание
- Задание
- 1.2. Кинетика химических процессов
- 1.3. Химическое равновесие
- Задание
- II. Строение вещества
- 2.1. Строение атома
- Электронная оболочка атома
- Периодическая система элементов д.И. Менделеева
- Свойства элементов
- Задание
- 2.2. Строение молекулы
- Ионная связь
- Ковалентная связь
- Металлическая связь
- 2.3. Агрегатные состояния вещества
- Задание
- III. Растворы
- 3.1. Состав раствора
- Жидкие растворы (водные растворы)
- Тепловой эффект растворения (энтальпия растворения)
- 3.2. Свойства растворов. Давление насыщенного пара над раствором
- Температура кипения и температура замерзания раствора
- 3.3. Неэлектролиты и электролиты
- Сильные и слабые электролиты
- Электролитическая диссоциация воды. Водородный показатель. Нейтральная, кислая и основная среды
- Задание
- IV. Реакции в растворах
- 4.1. Ионные уравнения. Реакции ионного обмена
- Ионное уравнение реакции запишется
- 4.2. Гидролиз солей
- 4.3. Окислительно-восстановительные реакции
- 4.4. Окислительно-восстановительные свойства элементов
- 4.5. Наиболее важные окислители и восстановители
- Задание
- V. Электрохимические процессы
- 5.1. Химические источники электрической энергии
- Гальванический элемент записывают в виде электрохимической схемы. Электрохимическая схема элемента Якоби – Даниэля
- 5.2. Электролиз
- Например, при электролизе водного раствора сульфата меди
- Задание
- VI. Металлы. Коррозия металлов
- 6.1. Физические свойства металлов
- 6.2. Химические свойства металлов
- Взаимодействие металлов с водой
- Взаимодействие металлов с водными растворами щелочей
- Взаимодействие металлов с кислотами
- 6.3. Коррозия металлов
- Защита металлов от коррозии
- Защита поверхности металла покрытиями
- Электрохимические методы защиты поверхности металла
- Использование ингибиторов коррозии.
- Задание
- Издательство «Нефтегазовый университет»
- 625000,Г. Тюмень, ул. Володарского, 38
- 625039,Г. Тюмень, ул. Киевская, 52