logo search
приемы пробл обуч

2.2 Формирование вычислительных навыков в традиционном обучении

Традиционно процесс обучения рассматривается как процесс взаимодействия учителя и учащихся, в ходе которого решаются задачи образования, воспитания и развития. К основным структурным компонентам, раскрывающим его сущность, относят цели обучения, содержание, деятельность преподавания и учения, характер их взаимодействия, принципы, методы, формы обучения.

В традиционном обучении содержание представлено в основном предметными знаниями, умениями, навыками. Интеллектуальные, учебные и другие умения находятся в снятом виде, представлены через предметные действия, не выступают самостоятельным предметом усвоения. Уровень их усвоения служит показателем успешности обучения. Также очевиден репродуктивный уровень представленности учебного содержания в учебниках: это конкретные правила и определения, которые нужно выучить, большое количество тренировочных упражнений, которые выполняются с целью закрепления, наличие образцов выполнения учебных заданий, ведущие к однотипности его выполнения – это концентрический принцип

структурирования учебного содержания, где изложение идёт от простого к сложному, от более лёгкого к трудному.

В развивающей системе обучения его содержание выступает средством развития личности ребёнка, следовательно, оно должно соответствовать содержанию развития, отражать его.

По мнению Г.А. Цукерман, взаимоотношения учителя и учащихся в традиционном обучении характеризуется как исполнительские, основанные на одностороннем подражании. Учитель при этом выступает как носитель совершенных образцов, а ребёнок как более или менее успешный имитатор действий взрослого: «Я делаю вслед за учителем. Я делаю сам, как учитель». Для традиционного обучения также характерно отсутствие собственно учебных отношений между детьми на уроках, что объясняется преобладанием фронтального способа организации деятельности детей, при котором все ученики связаны с учителем, общение замкнуто на нем.

Коренным образом меняется содержание деятельности учителя в развивающем обучении. Теперь главная задача учителя – не «донести», «преподнести» и показать учащимся, а организовать совместный поиск решения, возникший перед ними задачи. Учитель начинает выступать как режиссёр мини-спектакля, который рождается непосредственно в классе.

Развивающее обучение немыслимо без постоянного учебного общения, при котором учащийся, поняв, чего он не знает, не умеет делать, сам начинает активно действовать, восполняя недостаток знания и включая в этот процесс учителя, как более опытного партнёра. Мнение учителя при этом воспринимается детьми как одна из возможных точек зрения, которую нужно соотнести с собственной точкой зрения и мнениями других учеников. Необходимость такого общения вытекает из природы поисковой, исследовательской деятельности, при которой поиск истины в одиночку

невозможен, необходим коллективный поиск, сопровождающийся постоянным обменом мнениями.

Содержание обучения задаёт определённый способ его усвоения, определённый тип учения. В традиционном (объяснительно-иллюстративном) обучении преобладает догматический тип учения, который предполагает репродуктивный способ и уровень усвоения учебного содержания. Основные усилия учеников при этом сосредоточены на восприятии готовых знаний, образцов выполнения действий на их закреплении и воспроизведении. Находясь в ситуации решения какой-либо задачи, школьник, как правило, не старается найти способ решения, а усердно пытается вспомнить решение аналогичных задач. Если вспомнить не удаётся, аналогичная задача не отыскивается, то ученик чаще всего оставляет задачу не решённой или прибегает к другим (не учебным) способом выполнения. Как правило, ученик, оставаясь один на один с учебным материалом, не знает, как преступить к его изучению. Данный тип учения не может обеспечиваться активной мотивацией.

Отсутствие готового для запоминания учебного содержания изменяет позицию ученика в учебном процессе, коренным образом меняет тип учения. Из догматического он преобразуется в эвристический, исследовательский, при котором новое знание открывается учеником самостоятельно или в совместном поиске учителем и учащимся. И.С. Якиманская отмечает, что в условиях развивающего обучения учащиеся самостоятельно добывают знания и способы действия, перестраивают ранее полученные, осуществляют широкий перенос усвоенного на решение новых учебных и практических задач, то есть выполняют в основном не воспроизводящую, а преобразующую деятельность. Развивающие технологии имеют специальные методы, включающие детей в коллективный поиск: это создание проблемных ситуаций, ситуация учебного спора, метод коллизий, метод решения учебных задач.

Например, при формировании вычислительных навыков в традиционной системе рассматривается позиция: делай то, что тебе предлагают, чтобы научиться делать это быстро и правильно. Этот путь предполагает сообщение учащимся образца, алгоритма выполнения операций, на основании которого учащиеся многократно её выполняют. В результате такой репродуктивной деятельности достигается запоминание предложенного алгоритма и вырабатывается запланированный навык, при этом дети часто не осознают, на основе каких знаний выбраны операции и установлен порядок их выполнения.

В системе Л.В. Занкова действует другая позиция: делай для того, чтобы продвинуться в решении стоящей перед тобой математической проблемы или чтобы обнаружить такую проблему. Таким образом, используется косвенный путь формирования навыков, который предполагает включение учеников в продуктивную творческую деятельность, в самостоятельное установление алгоритма операции. Прежде всего, необходимо осознать, что предлагаемый путь является более длинным, и в системе нет стремления к быстрому формированию вычислительных навыков, а отводится большое время на осознание тех теоретических и практических основ, которые лежат в фундаменте предлагаемых способов вычислений. Такое осознание – процесс длительный, и его можно организовать только тогда, когда навык еще не сформировался. Если формирование навыка уже произошло, никакого плодотворного возврата к осознанию его источника не может быть для подавляющего большинства людей. Дети никогда не поймут, зачем нужно размышлять о том, что просто уже делаешь, не задумываясь[20,с.116].

Следующей особенностью является отказ от активной эксплуатации механической памяти при запоминании таких важных основ овладения вычислительными навыками, как таблицы сложения и умножения. В системе основ запоминания этих таблиц является длительная и активная деятельность, требующая постоянного обращения к ним. Именно этой особенностью диктуется то, что каждый ученик имеет право открыто пользоваться таблицами как справочным материалом до тех пор, пока ему это необходимо.

В результате такого подхода к формированию вычислительных навыков дети приобретают прочные и осознанные навыки выполнения математических действий. Когда такая цель достигнута, необходимо перейти к наращиванию скорости выполнения вычислений.

Органическое соединение осознания основ выполнения действий и формирование вычислительных навыков приводит к тому, что материал для работы над вычислительными навыками создается самими детьми, а не дается готовым.

Отличие разных систем обучения заключается не в том, что в одних используется один путь, а в других – другой. В каждой системе присутствуют оба подхода, различие же в том, каково соотношение этих путей. В системе, направленной на общее развитие учащихся, главным является именно косвенный путь формирования навыков, прямой же используется тогда и в той мере, как это необходимо. В связи с этим, системы обучения имеют различные подходы формирования вычислительных навыков. Так, например, традиционная система предполагает ряд этапов, направленных на работу над каждым отдельным приемом:

  1. Подготовка к введению нового приема.

На этом этапе создается готовность к усвоению вычислительного приема, а именно: учащиеся должны усвоить те теоретические положения, на которых основывается теоретический прием. Центральное же звено при подготовке к введению нового приема – овладение учеником основными операциями, которые войдут в новый прием.

  1. Ознакомление с вычислительным приемом.

На этом этапе ученики усваивают суть приема: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия. Степень самостоятельности учащихся должна увеличиваться при переходе от приема к приему другой группы.

  1. Закрепление знания приема и выработка вычислительного навыка.

На данном этапе учащиеся должны твердо усвоить систему операций, составляющих вычислительный прием, и предельно быстро выполнять эти операции, то есть овладеть вычислительным навыком.

В процессе работы важно предусмотреть ряд стадий в формировании у учащихся вычислительных навыков.

На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе. На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции, обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, то есть промежуточных вычислений. На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, то есть здесь происходит свертывание и основных операций. Четвертая стадия характеризуется предельным свертыванием выполнения операций: учащиеся выполняют все операции в свернутом плане предельно быстро, то есть они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

Названные стадии не имеют четких границ: одна постепенно переходит в другую.

В системе Л. В. Занкова [2] формирование навыков проходит три принципиально различных этапа.

Первый этап – осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения. На этом обязательно прослеживается, оценивается и создается каждый шаг в рассуждениях детей, устные рассуждения переводятся в запись математическими знаками. Отсюда вытекает характерный признак этого этапа - подробная запись выполнения операции, с которой в данный момент работают ученики. На этом этапе практически не используется прямой путь. Он возникает только при выполнении промежуточных, знакомых детям операций. Результатом этого этапа является выработка алгоритма выполнения операции и его осознание.

Главным направлением второго этапа является формирование правильного выполнения операции. Для достижения этой цели необходимо не только использование выработанного на 1 этапе алгоритма выполнения операции, но, может быть, в еще большей степени, свободная ориентация в ее нюансах, умение предвидеть. К чему приведет то или иное изменение компонентов операции. В силу этого на втором этапе используются оба пути формирования навыков, однако косвенный путь продолжает быть ведущим, прямой же используется в качестве подчиненного.

Третий этап формирования навыка нацелен на достижение высокого темпа выполнения операции. Именно на этом этапе на первый план выходит прямой путь формирования навыка. Главная задача учителя – построить работу так, чтобы дети хотели выполнять необходимые вычисления и получали от этого удовольствие.

Развитие умственных действий даёт возможность для развития всех структурных элементов учебной деятельности.

О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны выполняет все операции приводящие к решению.

Умение осознано контролировать выполняемые операции позволяет формировать вычислительные навыки более высокого уровня, чем без наличия этого умения.

Выполнение вычислительного приёма – мыслительный процесс, следовательно, овладение вычислительным приёмом и умение осуществлять контроль за его выполнением, должно происходить одновременно в процессе обучения.

Структура действия контроля должна соответствовать предметному содержанию процесса выполнения вычислительных приёмов, поэтому целесообразно обучать учащихся не только общему способу контроля, но и умению переносить этот способ на конкретные виды вычислительных приёмов.

Важными представляются следующие условия формирования действия контроля в процессе работы над вычислительными приёмами и навыками:

  1. осознание назначения контроля учащимися;

  2. формирование у учащихся контрольных суждений;

  3. постановка учителем перед учащимися задачи на контроль;

  4. совместное планирование действий и контроль за их выполнением;

  5. использование заданий, направленных на усвоение алгоритмов контролирующих действий учащимися;

  6. критическое отношение учащихся к контролю со стороны других детей, учителя;

  7. формирование потребности в действии контроля.

Перечисленные условия формирования действия контроля в процессе работы над вычислительными приёмами и навыками позволят учащимся избежать трудностей в вычислениях, помогут ученикам быть более внимательными в процессе овладения вычислительными приёмами.