2.1.Этапы решения задач методом координат
Чтобы решать задачи как алгебраические, так и геометрические методом координат необходимо выполнение 3 этапов:
1) перевод задачи на координатный (аналитический) язык;
2)преобразование аналитического выражения;
3)обратный перевод, т. е. перевод с координатного языка на язык, в терминах которого сформулирована задача.
Для примера рассмотрим алгебраическую и геометрическую задачи и проиллюстрируем выполнение данных 3 этапов при их решении координатным методом.
№1. Сколько решений имеет система уравнений.
Решение:
1 этап: на геометрическом языке в данной задаче требуется найти, сколько точек пересечения имеют фигуры, заданные данными уравнениями. Первое из них является уравнением окружности с центром в начале координат и радиусом, равным 1, а второе — уравнением параболы.
2 этап: построение окружности и параболы; нахождение точек их пересечения.
3 этап: количество точек пересечения окружности и параболы является ответом на поставленный вопрос.
№2. Найдите множество точек, для каждой из которых расстояния от двух данных точек равны.
Решение:
Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А Предположим далее, что АВ=а, тогда в выбранной системе координат А(0,0) и В(а,0). Точка М(х,у) принадлежит искомому множеству тогда и только тогда, когда АМ=МВ, или, что то же самое, АМ2=МВ2. Используя формулу расстояния от одной точки координатной плоскости до другой, получаем АМ2=x2+y2, MB2=(x-a)2+y2. Тогда х2+у2=(х-а)2 + у2
Равенство х2+у2=(х-а)2+у2 и является алгебраической моделью ситуации, данной в задаче. На этом заканчивается первый этап ее решения (перевод задачи на координатный язык).
На втором этапе осуществляется преобразование полученного выражения, в результате которого получаем соотношение .
На третьем этапе осуществляется перевод языка уравнения на геометрический язык. Полученное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А на расстояние , т.е. серединного перпендикуляра к отрезку АВ.
- Содержание
- Глава 1 Теоретические основы использования метода координат в основной школе. 4
- Глава 2 Методические основы изучения метода координат 13
- Введение
- Глава I Теоретические основы использования метода координат в основной школе
- 1.1 Основные положения изучения метода координат в школе
- 1.2 Анализ школьных учебников
- 1.3 Суть метода координат
- Глава 2 Методические основы обучения координатному методу
- 2.1.Этапы решения задач методом координат
- 2.2 Задачи, обучающие координатному методу
- 2.3 Виды задач, решаемых методом координат
- Заключение