logo
курсовая1

2.3 Виды задач, решаемых методом координат

Применяя метод координат, можно решать задачи двух видов.

  1. Пользуясь координатами можно истолковать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функции первый пример такого применения метода координат.

  2. Задавая фигуры уравнениями и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Например, можно выразить через координаты основную геометрическую величину - расстояние между точками.

В связи с усилением роли координатного метода в изучении геометрии особенно актуальной становиться проблема его формирования. Наиболее распространенными среди планиметрических задач, решаемых координатным методом, являются задачи следующих 2 видов: 1) на обоснование зависимостей между элементами фигур, особенно между длинами этих элементов; 2) на нахождение множества точек, удовлетворяющих определенным свойствам.

Примером задач первого вида может служить следующая:

«В треугольнике ABC, AB=c, AC=b, BC=a, BD - медиана.

Доказать, что »

Задача: «Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная» - является примером задач второго вида.

Решения этих задач были разобраны выше.

Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов.

П ример 1. Докажите, что сумма квадратов расстояний от точки, взятой на диаметре окружности, до концов любой из параллельных ему хорд постоянна.

Решение:

Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности . Используя это уравнение находим координаты точек Р( ) и М( ). Необходимо доказать, что АМ2+АР2 не зависит от переменной b. Найдем АМ2 и АР2 используя формулу нахождения расстояния между двумя точками по их координатам: . Они соответственно равны и , а их сумма после приведения подобных равна 2а2+2. Это число не зависит от переменной b, что и требовалось доказать.

Пример 2. Доказать, что сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей. (Теорема Эйлера)

Решение: Введем прямоугольную систему координат как показано на рисунке 12.

П усть точки А, В, С и D имеют координаты (0,0), (d,0), (c,d) и (0,d) соответственно. Следовательно, координаты точек L и P есть ( ) и ( ). Найдем квадраты длин отрезков, с помощью формулы нахождения расстояния между точками по их координатам.

AD2= ; BC2= ; DC2= ; AB2= ;

AC2= ; BD2= ; LP2= .

Запишем выражение, которое необходимо доказать, используя найденные нами значения.

AD2+BC2+DC2+AB2=AC2+BD2+4LP2

+ + + = + +4

Раскроем скобки, приведем подобные и получим верное равенство 0=0. Значит, сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей.

Пример 3. Диаметры AB и CD окружности перпендикулярны. Хорда ЕА пересекает диаметр СD в точке К, хорда ЕС пересекает диаметр АВ в точке L. Докажите, что если СК:KD так же как 2:1, то AL:LB так же как 3:1.

Решение: Введем прямоугольную систему координат, направив оси по данным диаметрам AB и CD (рис. 13).

Радиус окружности будем считать равным 1. Тогда точки А, В, С, D будут иметь координаты (-1,0), (1,0), (0,-1), (0,1) соответственно. Так как СК:KD=2:1, то точка К имеет координаты (0, ). Найдем координаты точки Е как точки пересечения прямой АК, имеющей уравнение и окружности, заданной уравнением . Получаем, что точка Е имеет координаты ( ). Точка L – это точка пересечения прямых СЕ и оси абсцисс, значит ординаты точки L равна 0.

Найдем абсциссу точки L. Прямая СЕ задана уравнением . Она пересекает ось Ох в точке ( ,0). Отсюда координаты точки L( ,0). Найдем отношение AL:LB. Оно равно трем, что и требовалось доказать.

Задачи

  1. Доказать, что если в треугольнике две медианы конгруэнтны, то треугольник равнобедренный.

  2. Найти множество таких точек Р, что отношение расстояний от каждой из них до двух данных точек равно а.

  3. Докажите, что уравнение окружности с центром в точке С (а,с) и радиусом r имеет вид: (х-а)2+(у-с)2=r2

  4. Найти угол между прямыми Зх-4у+6=0 и 12х+5у+8=0

  5. Определите расстояние от точки А(-3,4) до прямой у=х+2.

  6. Вычислите площадь треугольника, вершины которого имеют следующие координаты: А (0,-2), В(6,2) и С(2,4) .

  7. На прямой с даны три точки А, В, С так, что точка В лежит между точками А и С. В одной полуплоскости с границей а построены равносторонние треугольники АМВ и ВРС. Доказать, что середина отрезка РА, середина отрезка МС и точка В являются вершинами равностороннего треугольника.

  8. Доказать, что для любой точки Р лежащей между вершинами В и треугольника ABC, справедливо равенство :

АВ2*РС+АС*ВР-АР2*ВС=ВС*ВР*РС.

  1. Дан прямоугольник. Докажите, что сумма квадратов расстояний от произвольной точки, принадлежащей плоскости этого прямоугольника до его вершин, в два раза больше суммы квадратов расстояний от этой точки до сторон прямоугольника.

  2. Доказать, что если через некоторую точку М провести прямую, пересекающую окружность в точках А и В, то произведение МА*МВ постоянно и не зависит от положения прямой.

  3. Дан прямоугольник ABCD. Найти множество точек М, для которых MA2+MC2=MB2+MD2. (ответ: множество точек М есть плоскость)

  4. Дан прямоугольник ABCD. Найти множество точек М, для которых MA+MC=MB+MD. (Ответ: пара прямых)

  5. Дан прямоугольный треугольник ABC (C=90°) . Найти множество точек Р, для которых 2РС2=РА2+РВ2. (ответ: множество точек Р есть прямая, содержащая середину М гипотенузы АВ и перпендикулярная к медиане СМ).