2.1 Анализ учебников математики 5-6 классов
Учебник математики для 5-го класса открывает линию учебников для основной и средней общеобразовательной школы, во всех учебниках которой реализована единая концепция развивающего обучения. Вместе с тем, каждый учебник обладает своей спецификой, обусловленной как программой, так и психофизиологическими особенностями школьников соответствующего класса.
Так, при изучении математики в 5-6 классах акценты делаются на:
- осуществление преемственности с курсом математики начальной школы;
- углубление интереса школьников к изучению математики;
- развитие самостоятельности мышления школьников;
- создание основ для изучения систематических курсов алгебры и геометрии, которые начинаются в 7-м классе.
Вопросы преемственности приобрели особую актуальность в последние 20 лет в связи внедрением в обучение математики в начальной школе развивающих педагогических систем Д.Б.Эльконина-В.В.Давыдова и Л.В.Занкова. Линии математики в этих комплектах представлены учебниками Э.И.Александровой, И.И.Аргинской и Н.Б.Истоминой. Нельзя не сказать и об учебниках Л.Г.Петерсон, в которых, как считает сама Людмила Георгиевна, интегрируются идеи Эльконина-Давыдова и Занкова. При обучении по этим учебникам у школьников формируются привычки анализировать, классифицировать, самостоятельно находить характеристические свойства объектов. В пятом классе мы продолжаем эту линию за счет включения в учебник подсистемы специальных заданий. В то же время эти задания помогают приобрести соответствующие умения и школьникам, которые занимались в начальной школе по традиционным учебникам.
Интерес к изучению математики поддерживается доступностью курса для школьников, так как успешность в изучении предмета является необходимой основой для развития интереса. С этой целью мы старались разгрузить изложение материала от второстепенных деталей, концентрируя внимание школьников на основном содержании. Тексты учебника краткие по объему и написаны простым языком.
Фабулы многих задач содержат интересные факты из географии, техники, биологии, истории. Как известно, однообразие утомляет и снижает интерес. Поэтому соседние задания в системе упражнений, как правило, отличаются либо по содержанию, либо по формулировке. Это заставляет школьников чередовать виды деятельности, переключаясь с алгоритмической деятельности на интеллектуальную и обратно.
Как и в других учебниках математики, в нашем учебнике есть задачи на смекалку. Однако у нас тематика таких задач, как правило, соответствует основному содержанию пункта, в который они включены.
И, наконец, в нашем учебнике есть список дополнительной литературы, с чтения которой для многих профессиональных математиков начался их путь в науку.
Большое внимание и в объяснительных текстах, и в системе заданий уделяется развитию навыков самостоятельного мышления. В систему упражнений включены задания, развивающие умения выделять общие свойства объектов, обосновывать свои решения, строить контрпримеры, искать рациональные пути решения, а также различные нестандартные задания, для выполнения которых школьникам не даются алгоритмы.
К таким заданиям относятся и все задачи на смекалку.
Одним из важных условий формирования самостоятельности мышления, как и любой самостоятельной деятельности, является навык самоконтроля. Самоконтролю в учебнике уделяется особое внимание. В системе упражнений есть специальные задания, выполнение которых заставляет школьника уяснить основные теоретические факты, установить взаимосвязи между разными алгоритмами. Каждый пункт учебника завершается вопросами и заданиями для самоконтроля. В разделе ответов учебника приводятся не только ответы практически ко всем заданиям, но имеются и советы а также решения к некоторым из них, что в первую очередь направлено на формирование самоконтроля школьников.
Одним из краеугольных камней фундамента, на котором строится систематический курс алгебры, являются вычислительные умения школьников. Поэтому большое внимание уделяется вычислительной практике. Для формирования более прочных навыков школьники учатся действовать с обыкновенными дробями, смешанными числами и десятичными дробями уже в пятом классе. Действия с обыкновенными дробями с разными знаменателями в пятом классе ограничиваются достаточно простыми случаями, когда приведение дробей к общему знаменателю не требует разложения знаменателей на простые множители. Более сложные случаи будут изучены в курсе шестого класса, где рассматривается делимость чисел. Это позволяет значительно больше времени уделить формированию и закреплению вычислительных навыков с обыкновенными дробями. Мы сознательно отказались от использования калькулятора на этом этапе.
С числовой линией тесно связаны такие математические понятия, как неравенства, равенства и уравнения. С уравнениями школьники знакомятся уже в начальной школе, а в пятом классе мы только поддерживаем уже полученные школьниками знания и тренируем их в составлении уравнений по текстам задач. Однако большинство задач в пятом классе предполагает решение по действиям. Основной этап развития линии уравнений будет связан с изучением пропорций и отрицательных чисел в шестом классе.
Использовать буквы ученики также начинают в начальной школе, а в пятом классе они продолжают работать с буквенными выражениями и равенствами: находят значения буквенных выражений, раскрывают скобки и приводят подобные слагаемые, записывают законы арифметических действий, формулы периметров, площадей фигур, а также объемов некоторых тел.
В 5-м классе школьники знакомятся с понятием процента и решают три основные задачи на проценты. В шестом классе ученики встретятся с задачами, где процентная база по ходу решения изменяется, в частности, с задачами на «сложные проценты».
Геометрический материал учебника знакомит школьников с основными понятиями геометрии, которые затем будут активно использоваться в систематическом курсе. Знакомство с основными геометрическими фигурами, стереометрическими телами и их свойствами в 5-6 классе носит преимущественно эмпирический характер. Так, например, к понятию равенства фигур приводят практические задания по наложению одной фигуры на другую. Школьники учатся использовать угольники, циркуль и транспортир. В учебнике представлены не все геометрические задачи, которые предстоит решать пятиклассникам - часть задач, особенно те, в которых ученики проводят построения на готовых чертежах, помещены в рабочую тетрадь, а часть включена в самостоятельные работы и вошла в методические рекомендации для учителя.
Система упражнений учебника сплетена из задач, имеющих различные дидактические функции. Для облегчения использования учебника номера заданий имеют соответствующую маркировку. Все задания можно разделить на две основные части: стандартные и нестандартные задания. Номера наиболее простых стандартных заданий никак не отмечены. Эти задания условно можно отнести к «обязательному минимуму». Номера более трудоемких, но стандартных с точки зрения плана решения заданий, обозначены значком «». Номера нестандартных заданий, обсуждение которых предполагается со всем классом, обозначены значком «». Понятно, что к нестандартным заданиям относятся и задания на смекалку, имеющиеся в каждом пункте учебника.
Учебники математики 5-6 классов, также как учебники алгебры и учебники алгебры и начал анализа, представляют лишь одну составляющую нашего учебно-методического комплекта. Вторая составляющая - это методические рекомендации для учителя. Наши рекомендации включают в себя разнообразный дидактический материал: самостоятельные и контрольные работы, математические диктанты, тесты, устные упражнения, которые нашли свое воплощение в подробных сценариях уроков.
Учебно-методический комплект для 5 и 6 классов имеет еще одну составляющую - рабочие тетради. В них, в основном, вошли задания, требующие от школьников трудоемких предварительных записей или рисунков. К таким заданиям, в первую очередь, относятся различные таблицы, задания, связанные с координатным лучом, координатной прямой, координатной плоскостью и геометрические задачи. Учебник и методические рекомендации для учителя необходимы для организации обучения. Наличие у каждого школьника рабочей тетради делает обучение более продуктивным, позволяя экономить время на переписывании заданий. В методических рекомендациях для учителя к каждому уроку расписаны задания из учебника и рабочей тетради. Задания в рабочей тетради могут быть использованы как для первичного закрепления навыка, для отработки навыка, так и для контроля знаний учащихся.
- Введение
- Глава I. Различные виды внеклассной деятельности
- 1.1 Внеклассная деятельность как одна из форм работы
- 1.2 Педагогические основы изучения математической логики в средней школе в рамках внеучебной деятельности
- 1.3 Виды и формы внеклассной деятельности
- Глава 2. Логический компонент школьных учебников по математике
- 2.1 Анализ учебников математики 5-6 классов
- 15.Основные понятия алгебры логики. Математическая логика: этапы развития, области применения.
- 2.1 Основания математической логики
- Элементы математической логики
- Математическая логика
- 33. Организация кружковой работы по физическому воспитанию в д/у.
- Математическая логика
- 4. Кружковая работа и ее значение в воспитании учащихся специальной (коррекционной) школы VIII вида
- История возникновения математической логики
- § 25. Математическая логика
- 1. Математическая логика