logo
Понятие натурального числа при изучении математики в младших классах

1.1.1 История возникновения натурального числа

Число, важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие число изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количественного описания и исследования. На первых ступенях развития понятие число определялось потребностями счёта и измерения, возникавшими в непосредственной практической деятельности человека. Затем число становится основным понятием математики, и дальнейшее развитие понятия число определяется потребностями этой науки.

Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального число протекал в общих чертах следующим образом. На низшей ступени первобытного общества понятие отвлечённого числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как, например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись различные словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавалось различно. Конечно, такие именованные числовые ряды были очень короткими и завершались неиндивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, т. е. выражалось разными словами для предметов разного рода, такими, как «толпа», «стадо», «куча» и т.д.

Источником возникновения понятия отвлечённого число является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона. У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отвлечённым, не зависящим от качества считаемых объектов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших число стала использоваться новая идея -- обозначение некоторого определённого число (у большинства народов -- десяти) новым знаком, например зарубкой на другой палочке.

С развитием письменности возможности воспроизведения число значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших число Вавилонские клинописные обозначения числа так же, как и сохранившиеся до наших дней «римские цифры», ясно свидетельствуют именно об этом пути формирования обозначений для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков -- цифр. Таким образом, параллельно с развитием письменности понятие натурального числа принимает всё более отвлечённую форму, всё более закрепляется отвлечённое от всякой конкретности понятие число, воспроизводимого в форме слов в устной речи и в форме обозначения специальными знаками в письменной.

Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т. е. потенциальной возможности его безграничного продолжения. Отчётливое представление о бесконечности натурального ряда отражено в памятниках античной математики (3 в. до н. э.), в трудах Евклида и Архимеда. В «Началах» Евклида устанавливается даже безграничная продолжаемость ряда простых чисел, в книге Архимеда «Псаммит» -- принципы для построения названий и обозначений для сколь угодно больших чисел, в частности больших, чем «число песчинок в мире».

С развитием понятия натурального числа как результата счёта предметов в обиход включаются действия над числами. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счёта равными частями (по два, по три и т.д.), деление -- как деление совокупности на равные части. Лишь в многовековом опыте сложилось представление об отвлечённом характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т. е. начинается развитие науки о числе -- арифметики. В первую очередь арифметика развивается как система знаний, имеющая непосредственно прикладную направленность. Но в самом процессе развития арифметики проявляется потребность в изучении свойств чисел как таковых, в уяснении всё более сложных закономерностей в их взаимосвязях, обусловленных наличием действий. Начинается детализация понятия натурального числа, выделяются классы чётных и нечётных чисел, простых и составных и т.д. Изучение глубоких закономерностей в натуральном ряду числу продолжается и составляет раздел математики, носящий название чисел теория.

Натуральные числа, кроме основной функции -- характеристики количества предметов, несут ещё другую функцию -- характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.) тесно переплетается с понятием количественного числа (один, два и т.д.). В частности, расположение в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребительным с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов).

Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычно и просто, что не возникало потребности в его определении в терминах каких-либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа -- с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19 в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному считаемых предметов и предметов, составляющих «эталонную» совокупность (на ранних ступенях -- пальцы рук и зарубки на палочке и т.д., на современном этапе -- слова и знаки, обозначающие числа), Определение, данное Кантором, было отправным пунктом для обобщения понятия количеств. Число в направлении количественной характеристики бесконечных множеств.

Другое обоснование понятия натурального числа базируется на анализе отношения порядка следования, которое, как оказывается, может быть аксиоматизировано. Построенная на этом принципе система аксиом была сформулирована Дж. Пеано.

Следует отметить, что перенесение понятия порядкового числа на бесконечные совокупности (порядковые трансфинитные числа и более общо -- порядковые типы) резко расходится с обобщённым понятием количественного числа; это обусловлено тем, что количественно одинаковые (равномощные) множества могут быть упорядочены различными способами.

Исторически первым расширением понятия числа является присоединение к натуральным числам дробных чисел. Введение в употребление дробных чисел связано с потребностью производить измерения. Измерение какой-либо величины заключается в сравнении её с другой, качественно однородной с ней и принятой за единицу измерения. Это сравнение осуществляется посредством специфической для способа измерения операции «откладывания» единицы измерения на измеряемой величине и счёта числа таких откладываний. Так измеряется длина посредством откладывания отрезка, принятого за единицу измерения, количество жидкости -- при помощи мерного сосуда и т.д. Однако не всегда единица измерения укладывается на измеряемой величине целое число раз, и этим обстоятельством, даже в самой примитивной практической деятельности, не всегда можно пренебречь. Здесь и содержится источник происхождения наиболее простых и «удобных» дробей, таких, как половина, треть, четверть и т.д. Но лишь с развитием арифметики как науки о числе созревает идея рассмотрения дробей с любым натуральным знаменателем и представление о дробном числе как о частном при делении двух натуральных чисел, из которых делимое не делится нацело на делитель.

Дальнейшие расширения понятия число обусловлены уже не непосредственными потребностями счёта и измерения, но явились следствием развития математики.

Введение отрицательных чисел было с необходимостью вызвано развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Возможный отрицательный ответ в задачах такого рода может быть истолкован на примерах простейших направленных величин (таких, как противоположно направленные отрезки, передвижение в направлении, противоположном выбранному, имущество -- долг, и т.д.). В задачах же, приводящихся к многократному применению действий сложения и вычитания, для решения без помощи отрицательного числа необходимо рассмотрение очень многих случаев; это может быть настолько обременительным, что теряется преимущество алгебраического решения задачи перед арифметическим. Таким образом, широкое использование алгебраических методов для решения задач весьма затруднительно без пользования отрицательного числа. В Индии ещё в 6--11 вв. отрицательные числа систематически применялись при решении задач и истолковывались в основном так же, как это делается в настоящее время.

В европейской науке отрицательные числа окончательно вошли в употребление лишь со времени Р. Декарта, давшего геометрическое истолкование отрицательного числа как направленных отрезков. Создание Декартом аналитической геометрии, позволившее рассматривать корни уравнения как координаты точек пересечения некоторой кривой с осью абсцисс, окончательно стёрло принципиальное различие между положительными и отрицательными корнями уравнения, их истолкование оказалось по существу одинаковым.

Числа целые, дробные (положительные и отрицательные) и нуль получили общее название рациональных чисел. Совокупность рациональных чисел обладает свойством замкнутости по отношению к четырём арифметическим действиям. Это значит, что сумма, разность, произведение и частное (кроме частного при делении на нуль, которое не имеет смысла) любых двух рациональных чисел является снова рациональным числом. Совокупность рациональных чисел упорядочена в отношении понятий «больше» и «меньше». Далее, совокупность рациональных чисел обладает свойством плотности: между любыми двумя различными рациональными числами находится бесконечно много рациональных чисел. Это даёт возможность при помощи рациональных чисел осуществлять измерение (например, длины отрезка в выбранной единице масштаба) с любой степенью точности. Таким образом, совокупность рациональных чисел оказывается достаточной для удовлетворения многих практических потребностей. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 в. и не представило, в отличие от обоснования натурального числа, принципиальных затруднений.

Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятия числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел. Этот переход состоит в присоединении к рациональным числам т. н. иррациональных чисел. Ещё в Древней Греции было сделано в геометрии открытие огромной принципиальной важности: не всякие точно заданные (что само по себе является присущей геометрии идеализацией) отрезки соизмеримы, т. е. не всегда длина отрезка может быть выражена рациональным Ч., если за единицу принят другой отрезок. Классическим примером несоизмеримых отрезков является сторона квадрата и его диагональ. Факт существования несоизмеримых отрезков не явился тормозом для развития геометрии. Греками была разработана (изложенная в «Началах» Евклида) теория отношений отрезков, учитывающая возможность их несоизмеримости. Они умели сравнивать такие отношения по величине, производить над ними арифметические действия (в чисто геометрической форме), т. е. греки обращались с такими отношениями, как с число. Однако идея о том, что отношение длин несоизмеримых отрезков может рассматриваться как число, у них не была осознана до конца. Это может быть объяснено культивировавшимся в школе, к которой принадлежал Евклид, идеалистическим отрывом теоретической математики от прикладных вопросов. В работах Архимеда мы находим значительно большую близость к прикладным вопросам, в частности приближённые вычисления отношений несоизмеримых отрезков, однако и у него не появляется понятие иррационального числа как число, выражающего отношение длин несоизмеримых отрезков.

В 17 в. в период зарождения современной науки и, в частности, современной математики разрабатывается ряд методов изучения непрерывных процессов и методов приближённых вычислений. Отчётливое определение понятия действительного числа даётся одним из основоположников математического анализа И. Ньютоном во «Всеобщей арифметике»: «Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой нами за единицу». Эта формулировка даёт единое определение действительного Ч., рационального или иррационального. В дальнейшем, в 70-х гг. 19 в., понятие действительного числа было уточнено на основе глубокого анализа понятия непрерывности в работах Р. Дедекинда, Г. Кантора и К. Вейерштрасса.

По Дедекинду, свойство непрерывности прямой линии заключается в том, что если все точки, составляющие прямую, разбить на два класса так, что каждая точка первого класса лежит левее каждой точки второго класса («разорвать» прямую на две части), то либо в первом классе найдётся самая правая точка, либо во втором -- самая левая точка, т. е. точка, в которой произошёл «разрыв» прямой.

Совокупность всех рациональных чисел свойством непрерывности не обладает. Если совокупность всех рациональных чисел разбить на два класса так, что каждое число первого класса будет меньше каждого числа второго класса, то при таком разбиении («сечении» Дедекинда) может оказаться, что в первом классе не будет существовать наибольшего числа, а во втором -- наименьшего. Так будет, например, если к первому классу отнести все отрицательные рациональные числа, нуль и все положительные числа, квадрат которых меньше двух, а ко второму -- все положительные числа, квадрат которых больше двух. Такое сечение называется иррациональным. Затем даётся следующее определение иррационального числа: каждому иррациональному сечению в совокупности рациональных чисел сопоставляется иррациональное число, которое считается большим, чем любое число первого класса, и меньшим, чем любое число верхнего класса. Совокупность всех действительных чисел, рациональных и иррациональных, уже обладает свойством непрерывности.

Обоснование Кантора понятия действительного числа отличается от обоснования Дедекинда, но также основывается на анализе понятия непрерывности. Как в определении Дедекинда, так и в определении Кантора используется абстракция актуальной бесконечности. Так, в теории Дедекинда иррациональное число определяется посредством сечения в совокупности всех рациональных чисел, которая мыслится как данная вся целиком.

В последние годы разрабатывается концепция «вычислимых»чисел, т. е. таких, приближения к которым могут быть заданы посредством какого-либо алгоритма. Понятие вычислимого числа определяется без пользования абстракцией актуальной бесконечности, на базе уточнённого понятия алгоритма.

Заключительный этап в развитии понятия число -- введение комплексных чисел. Источником возникновения понятия комплексного числа явилось развитие алгебры. По-видимому, впервые идея комплексного числа возникла у итальянских математиков 16 в. (Дж. Кардано, Р. Бомбелли) в связи с открытием алгебраического решения уравнений третьей и четвёртой степеней. Известно, что уже решение квадратного уравнения иногда приводит к действию извлечения квадратного корня из отрицательного числа, невыполнимому в области действительного числа. Но это происходит только в том случае, если уравнение не имеет действительных корней. Практическая задача, приводящаяся к решению такого квадратного уравнения, оказывается не имеющей решения. С открытием алгебраического решения уравнений третьей степени обнаружилось следующее обстоятельство. Как раз в том случае, когда все три корня уравнения являются действительными числами, по ходу вычисления оказывается необходимо выполнить действие извлечения квадратного корня из отрицательных числа. Возникающая при этом «мнимость» исчезает только по выполнении всех последующих действий. Это обстоятельство явилось первым стимулом к рассмотрению комплексных чисел. Однако комплексные числа и действия над ними с трудом прививались в деятельности математиков. Остатки недоверия к закономерности пользования ими отражаются в сохранившемся до наших дней термине «мнимое» число. Это недоверие рассеялось лишь после установления в конце 18 в. геометрического истолкования комплексных чисел в виде точек на плоскости и установления несомненной пользы от введения комплексных чисел в теории алгебраических уравнений, особенно после знаменитых работ К. Гаусса. Ещё до Гаусса, в работах Л. Эйлера, комплексные числа начинают играть существенную роль не только в алгебре, но и в математическом анализе. Эта роль стала исключительно большой в 19 в. в связи с развитием теории функций комплексного переменного.

Совокупность всех комплексных чисел обладает так же, как совокупность действительных чисел и совокупность рациональных чисел, свойством замкнутости по отношению к действиям сложения, вычитания, умножения и деления. Более того, совокупность всех комплексных чисел обладает свойством алгебраической замкнутости, заключающейся в том, что каждое алгебраическое уравнение с комплексными коэффициентами имеет корни снова в области всех комплексных чисел. Совокупность всех действительных чисел (и тем более рациональных) свойством алгебраической замкнутости не обладает. Так, например, уравнение с действительными коэффициентами х2+1=0 не имеет действительных корней. Как установлено Вейерштрассом, совокупность всех комплексных чисел не может быть далее расширена за счёт присоединения новых чисел так, чтобы в расширенной совокупности сохранились все законы действий, имеющие место в совокупности комплексных чисел.

Наряду с основной линией развития понятия число (натуральные числа; рациональные числа; действительные числа; комплексные числа), специфические потребности некоторых областей математики вызвали различные обобщения понятия число в существенно других направлениях. Так, в разделах математики, связанных с теорией множеств, важную роль играют упоминавшиеся выше понятия количественных и порядковых трансфинитных чисел. В современной теории числа получили большое значение. В алгебре изучаются различные системы объектов, обладающие свойствами, в большей или меньшей степени близкими к свойствам совокупности целых или рациональных чисел -- группы, кольца, поля, алгебры.

1.1.2 Аксиоматика натурального числа

Как уже было сказано, натуральные числа получаются при счете предметов и при измерении величин. Но если при измерении появляется числа, отличные от натуральных, то счет приводит только к числам натуральным. Чтобы вести счет, нужна последовательность числительных, которая начинается с единицы и которая позволяет осуществлять переход от одного числительного к другому и столько раз, сколько это необходимо. Иначе говоря, нужен отрезок натурального ряда. Поэтому, решая задачу обоснования системы натуральных чисел, в первую очередь надо было ответить на вопрос о том, что же представляет собой число как элемент натурального ряда. Ответ на это был дан в работах двух математиков - немца Грассмана и итальянца Пеано. Они предложили аксиоматику, в которой натуральное число обосновывалось как элемент неограниченно продолжающейся последовательности.

При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

-некоторые понятия теории выбираются в качестве основных и принимаются без определения;

каждому понятию теории, которое не содержится в списке основных, дается определение, в нем разъясняется его смысл с помощью основных и предшествующих данному понятий;

формулируются аксиомы - предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий;

каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.

Если построение теории осуществляется аксиоматическим методом, т.е. по названным выше правилам, то говорят, что теория построена дедуктивно.

При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.

Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения.

Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы. *

При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.

Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам.

N - натуральные числа, если определена операция следования «+1»:N->N. При этом:

P1 Если n+1=m+1 => n=m

P2 Нет такого n, что n+1=1

P3 Всякое подмножество Q М P, которое содержит 1, и вместе с n из Q содержит и n+1 равно P.

Веками формировалась школьная традиция обучения сложению и умножения на «палочках»:

- Чтобы сложить 2 кучки из 2-х и 3-х палочек надо просто свалить все палочки в одну кучу.

- Чтобы перемножить 2 на 3 надо 3-жды тиражировать 2 палочки или 2-жды тиражировать 3 палочки.

Всем это было предельно ясно, пока не появился господин Кантор. Он обнаружил, что рассмотрение очень больших кучек приводит к другим законам - логически парадоксальным. Математики долго ломали головы, чтобы разобраться с канторовыми парадоксами. Но тщетно, построить универсальную «Канторову линейку», которая измеряет всё вообще, не удалось и вряд ли удастся.

Первыми «канторов рай» покинули алгебраисты. Они обнаружили, что главное не в размерах кучек. А главное в том, что складывая две кучки A,B в одну A+B, мы строим два вложения A->A+B<-B. Соответственно, перемножая две кучки AxB, мы строим две проекции A<-AxB->B.

Оказывается, что для того, чтобы складывать и умножать меньше всего нужна «канторова теория множеств» с дремучей аксиоматикой. - Вполне достаточно выполнения простых универсальных свойств - любая пара отображений A->X<-B вполне характеризуется единственным A+B->X, или проходит через A+B, а любая пара отображений A<-X->B вполне характеризуется единственным AxB<-X, или проходит через AxB, так что коммутативны диаграммы:

Таким образом, складывать и умножать можно объекты самой невероятной природы.

Более того, для деления - вместо «канторовой теории» вполне достаточно другого универсального свойства.

Умножение натуральных чисел устроено так, что для любых элементов 1->A - их A<-AxB прообразы одинаковы, так что коммутативна диаграмма:

Натуральные числа являются «коллекциями единиц», и единичные представления вполне исчерпывают описание каждого натурального числа - A = (1,A). Именно поэтому, для них деление C->A всегда приводит к единственому делителю C=AxB.