Система нестандартных задач как средство развития логического мышления учащихся 5-6 классов на уроках математики

дипломная работа

1.2 Обучение учащихся решению нестандартных задач на уроках математики

В программе по математике в средней школе нет ограничений в отношении подбора задач, поэтому учитель может по своему усмотрению включать задачи и из другой математической структуры. Вместе с тем надо учитывать основные требования программы в отношении уровня умений решать нестандартные задачи учащимися. Обучение детей среднего школьного возраста решению нестандартных задач также важно. Эта работа развивает логическое мышление, формирует интерес к уроку математики.

Творчески работающий учитель никогда не ограничится одним учебником, а будет стремиться использовать все богатство заданий, других методических приемов, выбирая то, что наиболее подходит именно для его учеников. Проблемой внедрения в школьный курс математики нестандартных задач занимались не только исследователи в области педагогики и психологии, но и математики-методисты.

Какая задача по математике может называться нестандартной? Хорошее определение приведено в книге « Как научиться решать задачи» авторов Л.М. Фридмана, Е.Н. Турецкого. Нестандартные задачи - это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения.

Нестандартными (Ю. М. Колягин, К. И. Нешков, Д. Пойа и др.) или нетиповыми (И. К. Андронов, А. С. Пчелко и др.) называются текстовые задачи, решение которых не укладывается в рамки той или иной системы типовых задач.

Обобщая различные подходы методистов в понимании стандартных и нестандартных задач (Д. Пойа, Я. М. Фридман и др.), под нестандартной задачей понимаем такую задачу, алгоритм которой не знаком учащемуся и в дальнейшем не формируется как программное требование.

Нестандартная задача в отличие от традиционной не может быть непосредственно (в той форме, в которой она предъявлена) решена по какому-либо алгоритму. Такие задачи не сковывают ученика жесткими рамками одного решения. Необходим поиск решения, что требует творческой работы логического мышления и способствующий его развитию. Такая задача может быть очень простой, но с необычным содержанием, что требует при её решении напряжения ума и работы операций логического мышления.

При решении нестандартных задач развиваются воображения и фантазия, память и внимание, гибкость мышления, ум ребенка становится острее, формируются умения наблюдать, анализировать явления, проводить сравнения, обобщать факты, делать выводы. Рассуждения учащихся становятся - последовательными, доказательными, логичными, а речь - четкой, убедительной и аргументированной.

Решение таких задач расширяет математический кругозор, формирует неординарность мышления, умения применять знания в нестандартных ситуациях, развивает упорство в достижении поставленных целей, прививает интерес к изучению классической математики. Воспитывается любознательность, самостоятельность, активность, инициативность. Все это развивает творческое мышление средних школьников.

Решение нестандартных задач - вовсе не привилегия математики. Все человеческое познание есть не что иное, как не прекращающийся процесс постановки и разрешения все новых и новых задач, вопросов, проблем.

Именно в ходе решения таких задач самым естественным способом можно формировать у школьников элементы творческого математического мышления наряду с реализацией непосредственных целей обучения математики. (Л.П.Терентьева Решение нестандартных задач уч. пособие Ч.2002 стр.6)

Традиционное обучение математике имеет дело лишь с задачами, формирующими у школьников определённые операционные навыки по данному образу-стандарту. Встречаясь же с нестандартной задачей, учащиеся часто не знают, как её решать, не делая даже попыток отыскать это решение. И только участие в математических олимпиадах, понимание того факта, что нестандартная задача не означает её недоступность для решения; накопления опыта в общих приёмах решения нестандартных задач позволяет школьникам решать их успешно.

Таким образом, нестандартная задача - это задача, решение которой для данного ученика не является известной цепью известных действий. Поэтому понятие нестандартной задачи относительно. Успех в решении зависит не только от того, решались ли раньше подобные задачи, сколько от опыта их решения вообще, от числа полностью разобранных решений с помощью учителя с подробным анализом всех интересных аспектов задачи. Нерешённая задача подрывает у учащихся уверенность в своих силах и отрицательно влияет на развитие интереса к решению задач вообще, поэтому учитель должен проследить за тем, чтобы поставленные перед школьниками нестандартные задачи были решены. Но вместе с тем решение нестандартных задач с помощью учителя - это вовсе не то, чего следует добиваться. Цель постановки в школе нестандартных задач - научить школьников решать их самостоятельно.

Нестандартные задачи делятся на 2 категории:

1 категория. Задачи, примыкающие к школьному курсу математики, но повышенной трудности - типа задач математических олимпиад.

2 категория. Задачи типа математических развлечений.

Первая категория нестандартных задач предназначается в основном для школьников с определившимся интересом к математике; тематически эти задачи обычно связаны с тем или иным определённым разделом школьной программы. Относящиеся сюда упражнения углубляют учебный материал, дополняют и обобщают отдельные положения школьного курса, расширяют математический кругозор, развивают навыки в решении трудных задач.

Вторая категория нестандартных задач прямого отношения к школьной программе не имеет и, как правило, не предполагает большой математической подготовки. Это не значит, однако, что во вторую категорию задач входят только лёгкие упражнения. Здесь есть задачи с очень трудным решением и такие задачи, решение которых до сих пор не получено.

Нестандартные задачи, поданные в увлекательной форме, вносят эмоциональный момент в умственные занятия. Но связанные с необходимостью всякий раз применять для их решение заученные правила и приёмы, они требуют мобилизации всех накопленных знаний, приучают к поискам своеобразных, не шаблонных способов решения, обогащают искусство решения красивыми примерами, заставляют восхищаться силой разума. [15, с 67]

Нахождение искомого при решении нестандартных математических задач предполагает открытие не известных ребёнку признаков, существенных для решения проблемы отношений, закономерных связей между признаками, тех способов, с помощью которых они могут быть найдены. Ребёнок при этом вынужден действовать в условиях неопределенности, намечать и проверять ряд возможных решений, осуществлять выбор между ними, подчас не имея к тому достаточных оснований. Он ищет ключ к решению на основе выдвижения гипотез и их проверки, т. е. способы опираются на известное предвидение того, что может быть получено в результате преобразований. Существенную роль в этом играют обобщения, позволяющие сокращать количество той информации, на основе анализа которой он приходит к открытию новых знаний, уменьшать число проводимых при этом операций, «шагов» к достижению цели.

Как подчеркивает Л.Л. Гурова, весьма плодотворным в поиске пути решения проблемы оказывается ее содержательный, семантический анализ, направленный на раскрытие натуральных отношений объектов, о которых говорится в нестандартной задаче. В нем существенную роль играют образные компоненты мышления, которые позволяют непосредственно оперировать этими натуральными отношениями объектов. Они представляют собой особую, образную логику, дающую возможность устанавливать связи не с двумя, как при словесном рассуждении, а со многими звеньями анализируемой ситуации, действовать, по словам Л.Л. Гуровой, в многомерном пространстве.

В исследованиях проведенных под руководством С.Л. Рубинштейна (Л.И. Анцыферовой, Л.В. Брушинским, A.M. Матюшкиным, К.А. Славской и др.), в качестве эффективного приема, используемого в логическом мышлении, выдвигается «анализ через синтез». На основе такого анализа искомое свойство объекта выявляется при включении объекта в ту систему связей и отношений, в которой он более явно обнаруживает данное свойство. Найденное свойство открывает новый круг связей и отношений объекта, с которыми это свойство может быть соотнесено. Такова диалектика логического познания действительности. Реально такое решение подготовлено прошлым опытом, зависит от предшествующей аналитико-синтетической деятельности и прежде всего - от достигнутого решающим уровня словесно-логического понятийного обобщения (К.А. Славская). Однако, сам процесс поисков решения в значительной своей части осуществляется интуитивно, под порогом сознания, не находя своего адекватного отражения в слове, и именно потому его результат решения нестандартной задачи является сложным процессом и требует планомерного развития.

Применив метод введения нестандартных задач, Я.А. Пономарев выявил ряд закономерностей их влияния на процесс развития логического мышления учащихся. Наибольший эффект достигается тогда, когда учащийся на основе логического анализа уже убедился в том, что не может решить испробованными им способами задачу, но еще не потерял веры в возможность успеха. При этом нестандартная задача сама по себе должна быть интересной, чтобы полностью поглотить сознание решающего, и не столь легкой, чтобы ее решение могло быть выполнено автоматически. Чем меньше автоматизирован способ решения, тем легче его перенос на решение задачи.

Логическое мышление предполагает не только широкое использование усвоенных знаний, но и преодоление барьера прошлого опыта, отхода от привычных ходов мысли, разрешение противоречий между актуализированными знаниями и требованиями учебной ситуации, оригинальность решений, их своеобразие. Эту сторону логического мышления чаще всего обозначают как гибкость ума, динамичность, подвижность и т.д. Наиболее удачен первый термин (два других чаще употребляются в контексте психофизиологических работ).

При гибком уме учащийся легко переходит от прямых связей к обратным, от одной системы действий к другой, если этого требует решаемая задача, он может отказаться от привычных действий и т.д. Инертность ума проявляется в противоположном: в склонности к шаблону, в трудности переключения от одних действий к другим, в длительной задержке на уже известных действиях, несмотря на наличие отрицательного подкрепления и т.д.

Г.П. Антонова, исследуя гибкость мышления при решении разнообразных задач, отмечает устойчивость этого качества и наличие весьма существенных различий по суммарному «показателю гибкости» мышления школьников одного и того же возраста: для крайних групп -- наиболее и наименее развитых и исследованных ею школьников этот показатель равен соответственно 12,5% и 89%, т.е. один показатель превышает второй более чем в 6 раз.

Однако значительная часть учителей, следуя методическим указаниям, предложенным задачам в учебнике, проводит работу над нестандартной задачей, которая недостаточно полно реализует как обучающие, так и развивающие функции. Чтобы усилить развивающий аспект обучения, полезно научить решать нестандартную задачу. Также помочь учащимся осознать выбор действий, посредством которых решается нестандартная задача, сможет правильно выбранная наглядная интерпретация задачи.

Особого внимания в развитии творческого мышления учащихся 5-6 классов требуют нестандартные задачи. Такие задачи стимулируют процесс обучения, так как при их решении у детей проявляется умение применять различные приемы и методы решения задач, умение анализировать, рассуждать, предлагать и проверять эти предположения, делать соответствующие выводы. Поэтому при решении нестандартных задач учителю необходимо организовать работу таким образом, чтобы учащиеся находили различные способы решения, сравнивали их и выбирали наиболее легкий и рациональный.

Анализ учебников по математике 6 класса.

На наличие нестандартных задач нами были проанализированы три учебника по математике для учащихся 6 класса авторов Ю.М. Дорофеева и др., А.Г. Мордковича и др., Н.Я. Виленкина и др.. которые входят в Федеральный перечень учебников, рекомендованных Минобрнауки РФ.

В учебнике Ю.М. Дорофеева, И.Ф. Шарыгина и др., нестандартные задачи не даются конкретно и не входят в отдельный раздел. Они ни чем не выделяются, нет ни какого красочного оформления, чтобы привлечь внимание учащихся. Всего содержится 6 нестандартных задач.

1.3 Требования к системе учебных заданий, направленных на развитие логического мышления

Для формирования логического мышления приоритетным является обучение ориентированное на формирование учебной деятельности, приводящее к становлению теоретического мышления.

Основным средством развития математических способностей учащихся являются задачи. Не случайно известный современный математик Д.Пойа пишет: «Что значит владение математической? Это есть умение решать задачи, причем не только стандартные, но и требующие известной независимости мышления, здравого смысла, оригинальности, изобретательности».

Одна из главных причин затруднений учащихся, испытываемых ими при решении задач, заключается в том, что математические задачи, содержащиеся в основных разделах школьных учебников, как правило, ограничены одной темой. Их решение требует от учащихся знаний, умений и навыков по какому-нибудь одному вопросу программного материала и не предусматривает широких связей между различными разделами школьного курса математики. Роль и значение таких задач исчерпываются в течении того непродолжительного периода, который отводиться на изучение (повторение) того или иного вопроса программы. Функция таких задач чаще всего сводиться к иллюстрации изучаемого теоретического материала, к разъяснению его смысла. Поэтому учащимся нетрудно найти метод решения данной задачи. Этот метод иногда подсказывается названием раздела учебника или задачника, темой, изучаемой на уроке, указаниями учителя и т. д. Самостоятельный поиск метода решения учеником здесь минимален. При решении задач на повторение, требующих знания нескольких тем, у учащихся, как правило, возникают определенные трудности.

К сожалению, в практике обучения математике решение задач чаще всего рассматривается лишь как средство сознательного усвоения школьниками программного материала. И даже задачи повышенной трудности специальных сборников, предназначенных для внеклассной работы, в основном имеют целью закрепление умений и навыков учащихся в решении стандартных задач, задач определенного типа. А между тем функции задач очень разнообразны: обучающие, развивающие, воспитывающие, контролирующие.

Каждая предлагаемая для решения учащимся нестандартная задача может служить многим конкретным целям обучения. И все же главная цель нестандартных задач -- развить творческое мышление учащихся, заинтересовать их математикой, привести к «открытию» математических фактов. Достичь этой цели с помощью одних стандартных задач невозможно, хотя стандартные задачи, безусловно, полезны и необходимы, если они даны вовремя и в нужном количестве. Следует избегать большого числа стандартных задач как на уроке, так и во внеклассной работе, так как в этом случае сильные ученики могут потерять интерес к математике. Ознакомление учащихся лишь со специальными способами решения отдельных типов задач создают, на наш взгляд, реальную опасность того, что учащиеся ограничатся усвоением одних шаблонных приемов и не приобретут умения самостоятельно решать незнакомые задачи.

В системе задач школьного курса математики, безусловно, необходимы задачи, направленные на отработку того или иного математического навыка. Но не менее необходимы задачи, направленные на воспитание у учащихся устойчивого интереса к изучению математики, творческого отношения к учебной деятельности математического характера. Необходимы специальные упражнения для обучения школьников способам самостоятельной деятельности, общим приемам решения задач, для овладения ими методами научного познания реальной действительности и приемам продуктивной умственной деятельности, которыми пользуются ученые-математики, решая ту или иную задачу. Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных нестандартных задач, можно учить их наблюдать, пользоваться аналогией, индукцией, сравнениями, и делать соответствующие выводы.

Необходимо на уроках систематически использовать нестандартные задачи, способствующие целенаправленному развитию логического мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников смекалки, наблюдательности, творчества и оригинальности.

Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе нестандартных задач.

Нестандартные задачи многообразны, но их объединяет следующее:

1) способ решения нестандартных задач не известен. Для их решения характерно, броуновское движение мысли, т.е. к решению приводит метод проб и ошибок. Поисковые пробы решения могут в отдельных случаях закончиться догадкой, которая представляет собой нахождение пути искомого решения.

2) нестандартные задачи способствуют поддержанию интереса к предмету и играют роль мотива к деятельности учащихся. Необычность сюжета, способа презентации задачи находят эмоциональный отклик у детей и ставят их в условия необходимости ее решения;

3) нестандартные задачи составлены на основе знаний законов мышления.

Систематическое применение нестандартных задач способствует развитию указанных мыслительных операций и формированию математических представлений детей. Для решения таких задач характерен процесс приисковых проб. Появление догадки свидетельствует о развитии у детей таких качеств умственной деятельности, как смекалка и сообразительность. Смекалка - это особый вид проявления творчества. Она выражается в результате анализа, сравнений, обобщений, установления связей, аналогии, выводов, умозаключений. О проявлениях сообразительности свидетельствует умение обдумывать конкретную ситуацию, устанавливать взаимосвязи, на основе которых решающий задачу приходит к выводам, обобщениям. Сообразительность является показателем умения оперировать знаниями. Из этого следует, что смекалка, сообразительность, влекущие за собой догадку как результат поиска решения занимательной задачи, не есть что-то данное свыше. Эти качества умственной деятельности можно и нужно развивать в процессе обучения.

В любом случае догадке как способу решения задачи предшествует тщательный анализ: выделение в задаче существенных признаков, пространственного расположения и обобщения ряда фигур, их свойств, сходных признаков и т.п. Однако для решения нестандартных задач метод проб и ошибок ненадежен и нерационален. Гораздо более эффективный способ - вооружить детей теми приемами умственной деятельности, которые необходимы при этом: анализ и синтез, сравнение, аналогия, классификация. Предлагая учащимся нестандартные задачи, мы формируем у них способность выполнять эти операции и одновременно развиваем их.

Конечно, нельзя приучать учащихся решать только те задачи, которые вызывают у них интерес. Но нельзя и забывать, что такие задачи учащийся решает легче и свой интерес к решению одной или нескольких задач он может в дальнейшем перенести и на «скучные» разделы, неизбежные при изучении любого предмета, в том числе и математики. Таким образом, учитель, желающий научить школьников решать задачи, должен вызвать у них интерес к нестандартной задаче, убедить, что от решения математической задачи можно получить такое же удовольствие, как от решения нестандартных задач.

Задачи не должны быть слишком легкими, но и не должны быть слишком трудными, так как учащиеся, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. Не следует предлагать учащимся задачу, если нет уверенности, что они смогут ее решить. Ну а как же помочь учащемуся научиться решать задачи, если интерес к решению задач у него есть и трудности решения его не пугают? В чем должна заключаться помощь учителя ученику, не сумевшего решить интересную для него задачу? Как эффективным образом направить усилия ученика, затрудняющегося самостоятельно начать или продолжить решение задачи?

Не следует идти по самому легкому в этом случае пути -- знакомить ученика с готовым решением. Не следует и подсказывать, к какому разделу школьного курса математики относится предложенная задача, какие известные учащимся свойства и теоремы нужно применить при решении. Решение нестандартной задачи -- очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться.

Для осуществления формирования логического мышления учащихся 5-6 классов можно составить систему нестандартных заданий по темам:

· Задачи на смекалку

· Занимательные задачи

· Геометрические задачи

· Логические квадраты

· Комбинаторные задачи

· Задачи на переливание.

Учитель, преподающий в 5-6 классах, может развивать логическое мышление учащихся с помощью созданной системы нестандартных задач. Для этого необходимо учитывать следующее:

1. Нестандартные задачи должны быть посильными для детей;

2. Нестандартные задачи, отобранные для одного урока, должны быть разнообразными для воздействия на различные компоненты мышления;

3. Если ученики не справляются с решением нестандартных задач, то целесообразно оставить его на обдумывание до следующего урока;

4. Ученикам можно дать необязательное домашнее задание по составлению аналогичных нестандартных задач;

5. Если на уроке время ограничено, то нестандартные задачи можно применять на занятиях математического кружка.

Учащиеся хорошо воспринимают эти нестандартные задачи. Ребята видят в них отдых от утомительной, иногда однообразной часто арифметической тренировки. Это ненавязчивое средство обучения логическим приемам, которые применяются в каждом математическом рассуждении.

Система нестандартных задач позволяет привить интерес к предмету, дает более глубокое и полное понимание изучаемых тем, развивает логическое мышление учащихся. В результате повышается успеваемость учащихся.

Устойчивые положительные результаты можно получить при подборе нестандартных задач, имеющих отношение к заданной теме. Не следует предлагать нестандартные задачи как средство заполнения досуга или развлечения. Проблема включения задач подобного вида в учебный процесс должна решаться естественным образом. Воспитание культуры логического мышления должно проводиться повседневно. И.Л.Никольская, специально изучавшая данную проблему, установила экспериментально, что кратковременное обучение логическим понятиям не дает эффекта, его можно достичь только тогда, когда эти понятия органически вплетены в курс математики.

При отборе нестандартных задач исходили из следующих требований к системе нестандартных задач, направленных на развитие логического мышления:

? система нестандартных задач должна носить развивающую направленность, способствовать не только формированию определенных математических умений и навыков, но, в первую очередь, содействовать развитию логического мышления младших школьников, учить их определенным мыслительным приемам;

? в систему должны быть включены нестандартные задачи, которые помогут сформировать такие операции, как анализ, синтез, сравнение, абстрагирование, обобщение и классификация, и тем самым реализовать цель исследования;

? система нестандартных задач должна учитывать возрастные психологические особенности учащихся.

Система нестандартных задач помогут понять идею решения. Необходимо стремиться к тому, чтобы учащийся испытал радость от решения трудной для него задачи, полученного с помощью нестандартных задач предложенных учителем.

Таким образом, хорошим средством обучения решению задач, средством для нахождения плана решения являются нестандартные задачи.

Делись добром ;)