Возможности использования непроизвольной памяти младших школьников при формировании табличных случаев сложения и вычитания однозначных чисел

курсовая работа

2.1 Различные методические подходы к формированию табличных навыков сложения и вычитания с точки зрения возможностей непроизвольной памяти

Современный урок математики - это урок с гибкой структурой позволяющий педагогу реагировать на ситуации, возникающие на предыдущих уроках, и даже менять в допустимых пределах план отдельного урока в соответствии с обстоятельствами. Учитель при этом должен быть хорошо знаком с содержанием всего преподаваемого курса, чтобы двигаться в соответствии с ним в направлении, диктуемом ситуацией.

Оптимальная структура урока или группы уроков должна соответствовать принципу построения деятельности в целом. Определив границы имеющихся уже у учащихся знаний, намечаются этапы последующего изучения темы, пути движения к цели. Затем в результате совместной деятельности учителя и детей осуществляем изучение материала. При этом педагог может использовать и совместную деятельность детей в парах, группах; осуществить индивидуальную помощь затрудняющимся. Наблюдая за работой класса, учитель определяет, как организовать впоследствии дифференцированный подход к тем, кто имеет трудности в усвоении, и не затормозить при этом развитие наиболее успевающих учащихся. [29,c.70]

Тема "сложение и вычитание в пределах 20 с переходом через десяток" считается наиболее трудной в курсе математики 2-го класса (1-4), так как переход через десяток представляет собой качественный скачок в вычислительных навыках школьника. Если этот материал усвоен сознательно и прочно, то без труда осваивается и последующий раздел математики - сложение и вычитание с переходом через десяток в пределах 100 (иначе говоря, если ученик знает почему 6+8=14, то ему несложно вычислить далее: 14-8=6; 36+8=44; 44-38=6; 26+38=64; 64-38=26 и т.д.).

Перед изучением важно повторить те примеры, в которых одним из компонентов или результатом действия оказывается круглое число - десяток:

3+7= , 7+10= ,

6+4= , 10+4= ,

10-3= , 14-4= ,

10-2= , 15-10= ,

10+10= , 20-10= .

Для подготовки к изучению темы полезно потренироваться в решении деформированных и неопределенных примеров:

+=10, +10=17,

-2= 10, +4=14,

10-=7, 15-=10,

+=8, 16-=6,

10+=20, 20-=10,

+10=20, -10=10.

Решение этих примеров сводится либо к разложению десятка на два слагаемых, либо к поразрядному разложению двузначного числа.

На этих же операциях, по существу, основывается решение примеров на сложение и вычитание с переходом через десяток. Изучая эту тему, также применяем противопоставление родственных упражнений. [25,c.86]

Процесс преобразования примера на сложение в обратный пример на вычитание не является для них новым. Приведем пример беседы:

Учитель: Сегодня мы будем решать новые трудные задачи. Будьте внимательны. Посмотрите на доску. Там висит наборное полотно. Посчитайте, сколько карманов на нем.

Дети: В верхнем ряду 10 карманов, в нижнем ряду также 10 карманов. Всего 20 карманов.

Учитель: (закрывает правую половину наборного полотна). Посчитайте, сколько теперь карманов осталось в верхнем ряду и в нижнем ряду.

Дети: В верхнем ряду 5 карманов, и в нижнем ряду 5карманов. (То же самое делается и с правой половиной наборного полотна при закрытой левой).

Учитель для большей наглядности вкладывает в кармашки полотна разноцветные палочки. Расставляют 9 красных палочек в верхнем ряду, а 4 зеленых в нижнем.

Учитель: Сколько же палочек всего? Как решить эту задачу?

Дети: Надо к 9 красным палочкам прибавить 4 зеленых.

Учитель: Правильно! Но мы расставили палочки в двух рядах и ни один из них не полон, в обоих рядах остались пустые карманы. Перенесем палочки из одного ряда в другой так, чтобы заполнить один ряд. Как лучше переносить красные палочки вверх к красным? Почему?

Дети: Перенесем 1 зеленую палочку к красным.

Учитель: Сколько палочек тогда окажется в верхнем ряду? Как вы считали?

Дети: К 9 палочкам прибавили 1 палочку - получилось 10 палочек.

Учитель: А сколько всего получилось? Сколько палочек осталось внизу?

Дети: Внизу осталось 3 палочки, вверху - 10. Десяток да 3 единицы, будет 13. К десятку прибавить 3 - получится 13.

Учитель: Как мы решили задачу? Что мы сначала делали? Мы первое слагаемое дополнили до десятка. Сколько мы прибавили к 9, чтобы получить десяток?

Дети: Мы прибавили 1 палочку. К 9 прибавить 1 - получится 10.

Учитель: А дальше как считали?

Дети: Внизу осталось 3 палочки. 10 да 3 - будет 13.

Учитель: Скажите ответ.

Дети: К 9 прибавить 4 - получится 13.

Учитель: Решим теперь обратную задачу. Сколько всего палочек расставлено?

Дети: Расставлено 13 палочек.

Учитель: Из них 4 палочки зеленые. Их мы отдадим Вите. Сколько тогда останется палочек? Кто скажет условие задачи?

Учитель: Было 13 палочек, из них 4 палочки отдали Вите. Сколько палочек осталось?

Учитель: Как будем решать задачу? Нам надо отдать 4 палочки Вите. Будем отдавать ему по одной палочке. Сначала отдадим 3 палочки с нижнего ряда. Сколько теперь осталось на доске? Как это узнать?

Дети: На доске осталось 10 палочек. Из 13 вычесть 3 - получится 10.

Учитель: Мы закончили решение задачи? Нет! Нам надо отдать Вите всего 4 палочки. Мы же ему отдали 3 палочки. Сколько палочек еще надо отдать ему?

Дети: Еще надо отдать 1 палочку. Из 10 вычесть 1 - получится 9.

Учитель: Теперь повторите еще раз задачу и скажите полностью ответ.

Дети: Из 13 палочек вычесть 4 палочки - получится 9 палочек. На доске записывается рядом два вида примеров:

9+4=13, 13-4=9.

Как видно из изложенного, сначала сопоставляются два примера: на сложение и на вычитание (из суммы второго слагаемого). Затем решаются теми же рассуждениями другие пары примеров: 9+5=14, 14-5=9 и т.д.

При таком противопоставлении двух примеров постоянными для пары остаются числа, над которыми совершаются операции. Так, например, при решении пары примеров 9+4=13 и 13-4=9 логические операции совершаются над шестью числами: 9,4,13,10,3,1. если сопоставить последовательность операций при решении последней пары, то схематически это выглядит так:

9+4= 13-4=

9+1=10, 13-3=10,

(4-1=3) (4-3=1)

10+3=13 10-1=9

Сравнивая отдельные логические операции, мы обнаружим, что при решении двух данных взаимообратных примеров совершается как бы замкнутый цикл операций, следующих одна из другой; тем самым решение двух примеров сливается как бы воедино.

Процесс решения начинается с числа 9 и кончается этим же числом. Сопоставляя попарно эти действия, мы обнаружим, что пары промежуточных действий (9+1=10 и 10-1=9; 4-1=3 и 4-3=1; 10+3=13 и 13-3=10) также соответственно взаимообратные.

В существующей методике при объяснении сложения и вычитания с переходом через десяток принято обычно фиксировать процесс решения кратко, в два этапа:

Между тем пропущенный второй этап (9-3=6) наиболее важен, и потому целесообразно записывать решение примера на первых порах в три строки, а потом вообще к устному решению, без письменной фиксации промежуточных результатов, сразу записывая ответ.

Действия сложения и вычитания в пределах 20 входят в таблицу сложения и вычитания однозначных чисел и поэтому должны быть хорошо заучены. При этом надо обратить внимание не на раздельное изучение таблицы сложения и таблицы вычитания, а на заучивание четверок примеров.

В случае равных слагаемых четверка взаимосвязанных примеров вырождается в пару примеров: 6+6=12; 12-6=6.

Если в практике обучения подвергать перестройке во взаимообратные не только примеры на сложение, но и примеры на вычитание, то ассоциации всегда "6 да 9-15", "15 без 9-6" проявляются быстро и безошибочно.

Одновременное изучение сложения и вычитания облегчает осуществление процессов контроля (проверки результатов).[23,c.90]

Изучение действий в пределах второго десятка имеет важное значение для дальнейшего изучения математики в начальной школе.

Как известно, письменное и устное сложение и вычитание многозначных чисел основываются, в конечном счете на твердом знании таблицы сложения и вычитания в пределах 20. кроме того, первичное ознакомление с понятием умножения (деления) целесообразно также осуществить в пределах двух десятков, т.е. до изучения всех случаев сложения и вычитания в пределах 100 (до решения примеров вида 67+9, 67+29).

Математика начальных классов опирается на четыре действия: сложение, вычитание, умножение и деление. Благодаря своевременному внедрению четырех действий мышления обогащается познанием аддитивных свойств числа (разложимости целого числа в виде произведения нескольких множителей).[41,c.54]

Представляется естественным воспользоваться при изучении действий в пределах 20 теми навыками, которые были упрочены при обучении методом укрепления в пределах первого десятка.

Противопоставление действий сложения и вычитания создает условия для одновременного изучения соответствующих пар задач, например, на увеличение уменьшение числа на несколько единиц.

"Сложение и вычитание в пределах второго десятка" изучается по трем следующим разделам:

1. Нумерация и простейшие случаи сложения и вычитания в пределах 20, когда в составе соответствующих примеров обязательно встречается число 10, например: 10+7, 17-7, 7+10, 17-10.

2. Сложение и вычитание без перехода через десяток (15+3, 3+15, 18-3, 18-15).

3. Сложение и вычитание с переходом через десяток (9+7, 16+9).

Изучение темы "Сложение и вычитание в пределах 20 без перехода через десяток" целесообразно построить также на основе противопоставления взаимообратных примеров на сложение и вычитание.

Учитель: (Ставит на полку слева 1 пучок, изображающий десяток, и справа 3 палочки) Сколько палочек отложено?

Дети: Отложен 1 десяток и 3 единицы. Всего отложено 13 палочек.

Учитель: (откладывает отдельно от первой группы предметов 5 палочек и одновременно говорит) Сколько получится? Как будем прибавлять?

Ученики вначале затрудняются ответить на этот вопрос.

Учитель: Сначала были 1 пучок и 3 отдельные (с акцентированием этого слова) палочки. Теперь надо к ним прибавить 5 отдельных палочек. 5 отдельных палочек надо прибавить к чему? К пучку или также к отдельным палочкам?

Дети: 5 отдельных палочек прибавим к 3 отдельным палочкам - получится 8 отдельных палочек.

Учитель: Мы получим 8 отдельных палочек. Что еще войдет в сумму?

Дети: Еще надо прибавить 1 пучок к 8 отдельным палочкам.

Учитель: Как иначе сказать? В 1 пучке - 1 десяток, 8 палочек - 8 единиц. 1 десяток да 8 единиц - сколько всего будет?

Дети: К 1 десятку прибавить 8 единиц - получится 18.

Учитель: Прочитайте решенный пример.

Дети: К 13 прибавить 5, получится 18. (Учитель записывает на доске решенный пример: 13+5=18).

Учитель: А теперь решим другой пример. Мы к 13 прибавили 5. Пусть сначала было 5 отдельных палочек. (Переносит 5 палочек справа налево), к ним надо прибавить 13 палочек, т.е. 1 пучок и 3 отдельные палочки. Кто скажет, сколько получится?

Ученик: К 5 прибавить 13 - получится 18.

Учитель: Ты сказал ответ сразу. Это правильно: сколько было всего палочек в первом примере, столько их будет и во втором примере. Там получилось 18, и здесь 18. но как решать такие примеры? Расскажи подробно.

Ученик: К 5 отдельным палочкам прибавить 3 отдельные палочки - получится 8 отдельных палочек.

Учитель: Правильно. 8 отдельных палочек, да еще был целый пучок, сколько это будет?

Ученик: 8 единиц да 1 десяток - будет 18.

Учитель: А как сказать по-другому?

Ученик: К 5 прибавить 13 - получится 18.

На доске появляется две записи, одна под другой (общая сумма 18 записывается большими цифрами один раз после двух знаков равенства):

Сравнение процессов решения примера 11+6=17 и тут же за ним примера 17-6=11 показывает, что оба процесса совершаются в теснейшей взаимосвязи. И там и тут использовано поразрядное разложение числа 17 на 1 десяток и 7 единиц; и там и тут использован принцип поразрядного вычитания: единицы прибавляются к единицам в первом случае и единицы вычитаются из единиц во втором случае. В решениях первого и второго примеров используются одни и те же числа (17, 6, 11, 10, 1, 7). Этот факт является главенствующим в практике укрупненного усвоения знаний (манипулирование с одними и теми же числами облегчает усвоение знаний, так как при этом функционирует наиболее экономно механизм оперативной памяти).

Интересно обратить внимание школьников на сходство следующих двух четверок примеров:

При решении любого примера следует обращать внимание на набор чисел, с которыми производятся операции разложения или соединения, и на логические операции, совершаемые над данными числами. Действительно при одновременном изучении сложения и вычитания имеет место повторение одних и тех же логических операций при изменении состава чисел.

В самом деле, после решений первой пары примеров 14+2=16 и 16-2=14 следует решение обязательно второй пары примеров 15+2=17 и 17-2=15, а за ней и третьей пары 16+2=18 и 18-2=16 и т.д.

Можно отметить, что предлагаемый прием основан на трех операциях:

1. операции противопоставления вычитания сложению (переход от 14+2=16 к 16-2=14);

2. операции повторения сложения (переход от 14+2=16 к 15+1=17);

3. операции повторения вычитания (переход от 16-2 к 17-2).

Таким образом, при укрупненном подходе к упражнениям совершается сложная мыслительная деятельность, включающая в себя: преобразование одного примера в другой; противопоставление двух действий; повторение действий одного назначения (сложения и вычитания). [35,c.110]

Программа М.М.Моро по математике при изучении нумерации в пределах второго десятка особое внимание уделяет разложению двузначного числа на сумму разрядных чисел. Работая над составом двузначного числа, дети легко выделяют его десятки и единицы, но записать это так 15=10+5 затруднялись, хотя складывали свободно 10+5=15. Поэтому таким упражнениям на ряде уроков уделялось по несколько минут. Далее учили записывать сумму двух чисел в виде трех слагаемых и обратно:

1) 15+2=15+5+2 2)10+6+2=10+8

10+3=10+2+1 9+1+4=10+4

10+3= 9+1+3 9+1+4= 9+5

Попутно выясняли, как легче вычислить такие примеры. Ознакомление с сочетательным свойством сложения провели на основе соответствующих операций над предметными множествами. На наборном полотне поставили белые, серые и черные квадраты.

Надо было уложить их в пустую коробку. Можно сначала объединить серые и черные квадраты и их присоединить к белым. И в том и в другом случае в коробке окажутся все квадраты. Затем выполнили сложение соответствующих чисел: 4+2+3. Можно к 4 прибавить 2 и к полученной сумме прибавить 3, получится 9. Можно к 2 прибавить 3 и получившуюся сумму прибавить к 4, получим 9.

14+3=10+4+3=10+7=17

11+8=10+1+8=10+9=19

Этот способ вычисления иллюстрируется на наглядных пособиях: пучки палочек (по 10 палочек) и отдельных палочках.

Решение сопровождается устным пояснением: 14 состоит из 1 десятка и 4-х единиц, к 14 надо прибавить 3 единицы. Объединяя единицы, получим 7, добавим 1 десяток - всего 17.

Прием вычитания рассматривается как обратный прием сложения и поясняется на наглядных пособиях. Прием сложения для примеров с переходом через десяток: 9+5, 8+7 и т.д. - не требует нового обоснования, надо лишь поупражнять учащихся в разложении второго слагаемого на удобные для прибавления числа. Это достигается работой над следующими упражнениями:

1. "Угадай, какие числа складывали, если получили в сумме 10". На доске записаны и закрыты листом бумаги примеры. 10=6+4. учащиеся называют разные числа, которые дают в сумме 10, пока не назовут пример.

2. Сколько добавить к данному числу, чтобы получить 10?

Вычитание рассматривалось как действие обратное сложению и проводится по частям.

По традиционной программе Моро дети в 1 классе знакомятся с табличными случаями сложения и вычитания с переходом через десяток.

Знакомство с табличными случаями начинается с примеров 9+2, 8+3, 7+4, 6+5. Пользуясь индивидуальным наборным полотном с кружками, ученики под руководством учителя выполняют сложение однозначных чисел, сумма которых равна 11.

Учитель предлагает решить выражение 8+3 с помощью кружков и наборного полотна с двумя рядами карманов, по десять в каждом. Один ученик выполняет работу у доски на демонстрационном полотне, а остальные на индивидуальных пособиях. В верхний ряд вставляется 8 кружков одного цвета, а затем берут 3 кружка другого цвета, 2 из них вставляют в верхний ряд, а оставшийся 1 кружок - в нижний ряд. Ученики объясняют, как прибавить к 8 число 3: сначала дополнить 8 до 10, для этого надо к 8 прибавить 2, получится 10, потом к 10 прибавить то, что осталось (1), получится 11, значит 8+3=11. Можно вести запись 8+3=8+2+1=11.

С обратным действием вычитанием (вида 12-3) мы знакомим двумя приемами:

1. последовательное вычитание числа по частям: сначала вычитаем столько единиц, чтобы осталось 10, а затем из 10 вычитаем оставшиеся единицы вычитаемого (12-3=12-2-1);

2. основывается на знании состава числа и использовании связи между суммой и слагаемыми (12 -это 3 и 9, если из 12 вычесть 3, то получится 9).

После введения приемов рассматривается каждый случай вычитания, составляется таблица, которая заучивается. [18,c.7]

Математика в системе Л.В.Занкова рассматривается как интегрированный курс, объединяющий арифметику, алгебру, геометрию и элементы многих других математических дисциплин. Главенствующую роль в курсе играет арифметика, а в ней арифметика натуральных чисел.

Первоначальной основой знакомства с натуральными числами в системе общего развития является теоретико-множественный подход, который позволяет максимально использовать дошкольный опыт учащихся, сложившиеся у них представления о механизме возникновения чисел как результате пересчета групп предметов.

В центре внимания при изучении каждого концентра находится образование новой единицы счета - десятка, сотни, тысячи и т.д., что позволяет не только овладеть устной и письменной нумерацией, но и осознать принципы построения десятичной позиционной системы счисления. Изучение действий с натуральными числами распределяется следующим образом: табличное сложение и вычитание (1-й класс); внетабличное сложение и вычитание (2-й класс); табличное умножение и деление (2-й класс); деление с остатком (2-й класс); внетабличное умножение и деление на однозначное число (3-й класс); внетабличное умножение и деление многозначного числа многозначное, возведение в степень с натуральным показателем (4-й класс).

Основой знакомства со сложением и вычитанием в первом классе также является теоретико-множественный подход. Сложение рассматривается как операция с числами, эквивалентная объединению двух (или нескольких) непересекающихся конечных множеств, вычитание - как операция с числами, эквивалентная разбиению конечного множества на два непересекающихся подмножества, или определения количественной разницы между сравниваемыми конечными множествами.

Делись добром ;)