"Приближенные вычисления" – разработка факультативного курса и проектирование творческой задачи для 7-8 классов

дипломная работа

1. Понятия, связанные с приближенными вычислениями

В настоящем пункте перечислим понятия теории приближенных вычислений, с которыми знакомятся школьники с 1 по 11 класс.

Приближение. В справочной литературе можно встретить несколько формулировок.

1) Так, в энциклопедиях [17, с.487] и [19, с.316] рассматривается более широкое понятие - апроксимация - замена одних математических объектов другими, в том или ином смысле близкими к исходным. Апроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (таких, характеристики которых легко вычисляются или свойства которых уже известны).

2) В энциклопедии [8, с.20] также рассматривается приближение с недостатком и с избытком.

3) В энциклопедии [19, с.249] приближение рассматривается как замена числа, а мало отличающимся от него числом а* - его приближением.

Обобщив имеющиеся формулировки, будем понимать приближение как замену одних математических объектов другими, в том или ином смысле близкими к исходным.

Если приближенное значение меньше точного, то это приближенное значение по недостатку, если больше - то по избытку. Термин “приближение” будем использовать в смысле приближенного значения величины.

Округление. Округление числа будем понимать как приближенное представление числа в десятичной (или иной, например двоичной) системе счисления с помощью конечного числа разрядов. Такое определение представлено в энциклопедии [19, с.238]. Здесь же сказано о приближении с округлением, но четкой формулировки нет. В методической литературе определение термина “округления” не предлагается, этот термин объясняется через правила округления. В литературе встречаются три вида правил:

1) формальный алгоритм округления, [8, 11, 12];

2) правила округления целых чисел и десятичных дробей, [22];

3) правило четной цифры, [19, 8, 11, 12].

В приложении 2 к данной работе приведены формулировки правил.

Разные формулировки правил означают одно и то же. В учебниках используется, главным образом, формальный алгоритм округления.

Погрешность. В справочной литературе рассматриваются разные погрешности. Для определения погрешности важно знать об источниках ее возникновения. В источнике [6, с.17] выделены следующие причины возникновения погрешностей при решении задач:

1) математическое описание задачи является неточным, в частности неточно заданы исходные данные описания;

2) применяемый для решения метод часто не является точным: получение точного решения возникающей математической задачи требует неограниченного или неприемлемо большого числа арифметических операций; поэтому вместо точного решения задачи приходится прибегать к приближенному;

3) при выполнении арифметических операций производятся округления.

4) Разработана типология погрешностей в соответствии с причинами, т. е. выделяют три типа погрешности.

Типы погрешности, соответствующие этим причинам:

1) неустранимая погрешность - это погрешность, являющаяся следствием неточности задания числовых данных, входящих в математическое описание задачи;

2) погрешность математической модели - это погрешность, являющаяся следствием несоответствия математического описания задачи реальности;

3) погрешность метода;

4) вычислительная погрешность.

Введем формальные определения.

Пусть

I - точное значение отыскиваемого параметра,

I* - значение этого параметра, соответствующее принятому математическому описанию,

I*h - решение задачи, получаемое при реализации численного метода в предположении отсутствия округлений,

I*h* - приближение к решению задачи, получаемое при реальных вычислениях.

Тогда

1=I* - I неустранимая погрешность,

2=I*h - I* погрешность метода,

3=I*h* - I*h вычислительная погрешность,

0=I*h* - I полная погрешность.

Полная погрешность удовлетворяет равенству 0 = 1 + 2 + 3.

Во многих случаях под термином погрешность того или иного вида понимают не рассмотренные выше разности между приближениями, а некоторые меры близости между ними. Например:

0=|I*h* - I|

1=|I* - I|

2=|I*h - I*|

3=|I*h* - I*h|

При таких обозначениях получаем 0 1 + 2 + 3.

Выделим следующие группы погрешностей:

1) Погрешность измерения и погрешность приближения.

В некоторых источниках [25, с.142] под погрешностью измерения понимают разность х - а, где х - истинное значение измеряемой величины, а - результат измерения. Под погрешностью приближения понимают разность между числом х и его приближенными значениями. Например, приближенные значения числа .

2) Погрешности абсолютная, относительная и предельная.

Итак, в [15, с.13] сказано, что абсолютная погрешность - модуль разности |х - а|, где а - данное число, которое рассматривается как приближенное значение некоторой величины, точное значение которой равно х.

Под относительной погрешностью будем понимать отношение абсолютной погрешности приближенного числа к самому этому числу.

В справочнике [11, с. 95] дается понятие предельной погрешности.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью. Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной погрешностью.

3) Погрешности, возникающие в результате арифметических операций над числами.

Отметим погрешности произведения, суммы и разности, частного.

В справочнике [11, с.98 - 100] сказано, что предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых. При значительном числе слагаемых обычно происходит взаимная компенсация погрешностей; поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.

Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.

Предельная относительная погрешность суммы лежит между наименьшей и наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют одну и ту же (или примерно одну и ту же) предельную относительную погрешность, то и сумма имеет ту же (или примерно ту же) предельную относительную погрешность. Т.е. точность суммы не уступает точности слагаемых. При значительном же числе слагаемых сумма, как правило, гораздо точнее слагаемых.

Разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. “Потеря точности” особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

Здесь же в [11, с.100] о погрешности произведения сказано: предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей. Правило для двух сомножителей запишется так: 1 + 2. Точное же выражение будет: = 1 + 2 + 12, т. е. предельная относительная погрешность произведения всегда больше, чем сумма предельных относительных погрешностей сомножителей; она превышает эту сумму на произведение относительных погрешностей сомножителей. Это превышение обычно так невелико, что его не приходится учитывать.

Погрешность частного в [11, с.106 - 107] находится двумя способами:

1) Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя.

2) Пусть делимое и делитель имеют каждое по k значащих цифр. Тогда абсолютная погрешность частного в худшем случае близка к 1,05 единицы (k - 1) - го знака (этого значения она никогда не достигает).

Границы абсолютной и относительной погрешностей. В работе [15, с.13-14] даны следующие определения:

Граница абсолютной погрешности - это число (а) такое, что |х - а|(а).

Граница относительной погрешности - это число (а) такое, что |(х - а)/а|(а).

Высшая и низшая границы точного значения.

Высшая граница х: (ВГ х): g = а + а.

Низшая граница х: (НГ х): p = а - а.

При нахождении значения с заданной точностью, при нахождении погрешности, связанной с арифметическими операциями над числами важны понятия верных и значащих цифр. В [16, с.24] представлено следующее определение верных цифр: верными называют цифры, если представленный ими результат имеет погрешность не более Ѕ младшего разряда. В справочнике [11, с.93] значащими называют все верные цифры числа, кроме нулей, стоящих впереди числа. Верные и значащие цифры обозначают разное. Приведем пример. Так, если х = 20,024 и это значение имеет три верных цифры, то можно считать, что 19,95 < х < 20,05.

Большинство этих понятий встречается и в школьной программе.

Делись добром ;)